|
广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (3): 66-70.doi: 10.16088/j.issn.1001-6600.2015.03.010
王峰
WANG Feng
摘要: 本文给出非负矩阵A和B的Hadamard积的谱半径上界和M-矩阵A和B的Fan积的最小特征值下界的新估计式,这些估计式都只依赖于矩阵的元素,易于计算。数值例子表明,新估计式在一定条件下改进了现有的一些结果。
中图分类号:
[1] HUANG Rong. Some inequalities for the Hadamard product and the Fan product of matrices [J]. Linear Algebra Appl, 2008, 428(7):1551-1559. [2] LIU Qing-bing, CHEN Guo-liang, ZHAO Lin-lin. Some new bounds on the spectral radius of matrices [J]. Linear Algebra Appl,2010, 432(4): 936-948. [3] ZHAO Lin-lin. Two inequalities for the Hadamard product of matrices [J]. J Inequal Appl,2012, 2012(1):122. [4] GUO Qian-ping, LI Hou-biao, SONG Ming-yan. New inequalities on eigenvalues of the Hadamard product and the Fan product of matrices [J]. J Inequal Appl,2013,2013(1):433. [5] CHEN Fu-bin, REN Xian-hua, HAO Bing. Some new eigenvalue bounds for the Hadamard product and the Fan product of matrices[J]. J of Math (PRC), 2014, 34(5):895-903. [6] 陈景良,陈向晖.特殊矩阵[M]. 北京:清华大学出版社,2001. [7] HORN R A, JOHNSON C R. Topics in matrix analysis [M]. Cambridge: Cambridge University Press,1985. |
[1] | 刘喜富. 一类反三角矩阵的群逆和Drazin逆[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 61-65. |
[2] | 张廷海. 秩-1坡矩阵的周长及保持算子[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 57-60. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |