广西师范大学学报(自然科学版) ›› 2014, Vol. 32 ›› Issue (2): 75-81.

• • 上一篇    下一篇

广义符号动力系统中的Li-Yorke混沌集和ω-混沌集

刘龙生, 康云莲, 赵俊玲   

  1. 广西师范大学数学与统计学院,广西桂林541004
  • 收稿日期:2014-02-06 出版日期:2014-06-25 发布日期:2018-09-25
  • 通讯作者: 赵俊玲(1975—),女,河南驻马店人,广西师范大学副教授,博士。E-mail:jlzhao@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11261008);广西高校科学技术研究项目(2013YB038)

Li-Yorke Chaotic Set and ω-Chaotic Set of the Generalized Symbolic Dynamical Systems

LIU Long-sheng, KANG Yun-lian, ZHAO Jun-ling   

  1. College of Mathematics and Statistics,Guangxi Normal University, Guilin Guangxi 541004,China
  • Received:2014-02-06 Online:2014-06-25 Published:2018-09-25

摘要: 本文在广义符号动力系统Σ(Z+)中构造一个传递的、不变的、不可数的Li-Yorke混沌集,且这个混沌集$\widetilde{D}\subset$Σ(Z+)\∪∞N=2Σ(N),还构造了一个不可数的ω-混沌集,且这个混沌集S′$\subset$Σ(Z+)\∪∞N=2Σ(N)。说明了广义符号动力系统的混沌性状不是集中在有限个符号的动力系统中,在有限个符号动系统∪∞N=2Σ(N)的外部仍然具有较强的混沌性状。

关键词: Li-Yorke混沌集, ω-混沌集, 不变集, 传递点

Abstract: In this article,a Li-Yorke chaotic set, that is transitive, invariant and uncountable, is constructed in the generalized symbolic dynamical system Σ(Z+) and the chaotic set $\widetilde{D}\subset$Σ(Z+)\∪∞N=2Σ(N) is further proved. Moreover a ω-chaotic set is then constructed and the chaotic set S′$\subset$Σ(Z+)\∪∞N=2Σ(N) is also proved. It shows that the chaotic properties of generalized symbolic dynamical system do not focus on the symbolic dynamical system in which the number of symbolic is limited. It has very strong chaotic property outside the symbolic dynamical system with limited number of symbolic ∪∞N=2Σ(N).

Key words: Li-Yorke chaotic set, ω-chaotic set, invariant set, transitive point

中图分类号: 

  • O19
[1] 傅新楚,周焕文.一般符号动力系统的浑沌性态[J].应用数学和力学,1992,13(2):103-109.
[2] 李文波,刘磊.广义符号动力系统上的Li-Yorke混沌集[J].商丘师范学院学报,2008,24(6):38-40.
[3] 李文波.拓扑动力系统上的(伪)转移不变集[D].西安:西北大学,2006.
[4] 陈秀庆.一般符号动力系统的子移位的拓扑混合[D].杭州:浙江大学,2003.
[5] SNOHA L.Dense chaos[J].Comment Math Univ Carolinae,1992,33(4): 747-752.
[6] PIOREK J.On the generic chaos in dynamical systems[J].Univ Lagel Acta Math,1985,25: 293-298.
[7] BRUCKNER A M, HU T. On scrambled sets for chaotic functions[J]. Trans Amer Math Soc,1987, 301(1): 289-297.
[8] OPROCHA P.Distributional chaos revisited[J]. Trans Amer Math Soc, 2009, 361(9): 4901-4925.
[9] DU Bau-sen. On the invariance of Li-Yorke chaos of interval maps[J].J Difference Equ Appl, 2005, 11(9): 823-828.
[10] LI Shi-hai. ω-chaos and topological entropy[J]. Trans Amer Math Soc, 1993, 339(1): 243-249.
[11] GUIRAO J L G, LEMPART M.Relations between distributional,Li-Yorke and ω chaos[J].Chaos, Solitions & Fractals, 2006,28(3): 788-792.
[12] MORSE M, HEDLUND G A.Symbolic dynamics II: sturmian trajectories[J].Amer J Math 1940,62(1):1-42.
[1] 邓金虹, 赵俊玲. 非回归点集中的SS混沌集[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发