广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (2): 34-38.

• • 上一篇    下一篇

基于改进蚁群算法求解连续空间寻优问题

黄敏1, 靳婷1,2, 钟声1, 马玉春3   

  1. 1.海南大学信息科学技术学院,海南海口570228;
    2.复旦大学计算机科学与技术学院,上海200438;
    3.琼州学院电子信息工程学院,海南三亚572022
  • 收稿日期:2013-01-15 出版日期:2013-06-20 发布日期:2018-11-26
  • 通讯作者: 靳婷(1982—),女,天津塘沽人,复旦大学博士研究生。E-mail:tingj@fudan.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61073189);海南省自然科学基金资助项目(610224);海南省社会发展专项基金资助项目(2010SF004);海南省教育厅高等学校科研项目(Hjkj2010-40)

Ant Colony Algorithm for Solving Continuous Function Optimization Problem Based on Pheromone Distributive Function

HUANG Min1, JIN Ting1,2, ZHONG Sheng1, MA Yu-chun3   

  1. 1.College of Information Science and Technology,Hainan University,Haikou Hainan 570228,China;
    2.School of Computer Science and Technology,Fudan University,Shanghai 200438,China;
    3.Department of Electronic and Information Engineering,Qiongzhou University,Sanya Hainan 572022,China
  • Received:2013-01-15 Online:2013-06-20 Published:2018-11-26

摘要: 蚁群算法是近几年优化领域中出现的一种启发式仿生类并行智能进化算法,并在离散空间领域中得到广泛应用,但在求解连续空间优化问题方面的研究相对较少。为了克服蚁群算法在连续空间中搜索时间过长等缺点,在原有的连续空间寻优方法的基础上,提出了一种用于求解连续空间寻优问题的改进蚁群算法。针对各子区间内的总信息量及应有的蚁数的求解方式进行改进,引入一个随迭代次数增加而变化的函数,以提高改进后蚁群算法的收敛速度。仿真实验表明,提出的基于信息量分布函数的改进蚁群算法较有关文献的算法有更好的收敛性能,从而为蚁群算法求解这类问题提供了一种可行有效的新方法。

关键词: 蚁群算法, 连续空间寻优, 信息量

Abstract: Ant colony algorithm,in recent years,emerges as a novel approach of bionic meta-heuristic algorithm in the field of optimization.Though it is widely applied in the discrete space area,it is relatively less researched in solving continuous function optimization.Aiming at overcoming the shortage of long time in searching for continuous function with ant colony algorithm,the paper proposes an improved ant colony algorithm for solving continuous function optimization,which is based on the original methods of continuous function optimization.The improvement is directed against the total amount of pheromone and size of ant colony within all the subintervals.It leads-in a function that varieswith increase of the iterations,in the hope of increasing the convergence speed of ant colony algorithm after its improvement.And numerical simulation results indicate that,comparing with the algorithm proposed by References,thisimproved algorithm offers better solution for continuous space optimization problems,hence it is an effective new way to solve problems alike.

Key words: ant colony algorithm, continuous function optimization, pheromone

中图分类号: 

  • TP18
[1] DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learing approach to the trareling saleman problem[J].IEEE Transactions on EvolutionComputation,1991,1(1):53-66.
[2] DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colonyof cooperating agents[J].IEEE Transactions on Svstems,Man,and Cybernetics:Part B,1996,26(1):29-41.
[3] GAMBARDELLA L M,DORIGO M.Solving symmetric and asymmetric TSPs byant coloNies[C]//Proc IEEE Int Conf Evol Comp.Piscataway:NJ,IEEE Press,1996:622-627.
[4] 吴超,钟一文.蛋白质功能预测的蚁群优化算法[J].广西师范大学学报:自然科学版,2011,29(2):136-140.
[5] 汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策,2003,18(1):45-48.
[6] 高芳,韩璞,崔永杰.基于变异操作的蚁群算法用于连续函数优化[J].计算机工程与应用,2011,47(4):5-8.
[7] 周建新,杨卫东,李擎.求解连续函数优化问题的改进蚁群算法及仿真[J].系统仿真学报,2009,21(6):1685-1688.
[8] 王君,肖菁,张军.改进蚁群算法求解连续函数约束优化问题[J].计算机工程与设计,2010,31(5):1027-1030.
[9] 赵海英,李桂成,崔军.正态分布蚁群算法求解函数优化问题[J].计算机工程与应用,2010,46(30):54-56.
[1] 赵鑫, 宋英强, 胡月明, 刘轶伦, 朱阿兴. 基于多源开放数据的城乡居民点空间布局优化[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 26-40.
[2] 周克良, 邢素林, 聂丛楠. 基于自适应阈值小波变换的心音去噪方法[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 19-25.
[3] 朱经纬, 芮挺, 李决龙, 方虎生, 张金林. 基于蚁群神经网络的机械手自组织逆运动规划[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 125-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发