广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (1): 1-5.

• •    下一篇

基于特性和影响因素分析的短时交通流预测

许伦辉, 游黄阳   

  1. 华南理工大学土木与交通学院,广东广州510640
  • 出版日期:2013-03-20 发布日期:2018-11-26
  • 通讯作者: 许伦辉(1965—),男,江西南康人,华南理工大学教授,博导。E-mail:lhxu@scut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51268017,61263024)

Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors

XU Lun-hui, YOU Huang-yang   

  1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou Guangdong 510640,China
  • Online:2013-03-20 Published:2018-11-26

摘要: 可靠的短时交通流预测是智能交通系统的重要基础。为了提高短时交通流预测的预测精度和对于不同交通状态的适应性,在分析了交通流特性以及时空二维影响因素的基础上,提出了一种组合预测模型,使其能够综合反映这些特性和影响因素。该组合预测模型包括时间序列模块、空间相关模块和组合预测模块三个子模块。单项预测模型包括自适应单指数平滑模型和RBF神经网络模型,组合系数是以两个单项预测子模块的平滑百分比相对误差作为输入,以神经网络作为学习算法自适应地得到。最后通过平峰和高峰时段实测的交通流量数据来验证模型的有效性和可靠性,结果表明:该组合预测模型的预测精度高于单项预测模型各自单独使用时的精度,且对于不同的交通流状况具有较好的适应性。

关键词: 智能交通系统, 交通流预测, 指数平滑法, RBF神经网络

Abstract: Reliable short-term traffic flow forecasting is an important foundation for the intelligent transportation system.In order to improve the accuracy of the short-term traffic flow forecasting and increase its adaptabilityin different traffic states,a combination forecasting model based on the analysis of traffic flow characteristics and space-time two-dimensional impact factors is presented to reflect the characteristics and influencing factors.The model has three sub-models:time-series model,space-related model and combinationforecasting model.The single forecast models includes single adaptive exponential smoothing model and RBF neural network model.The combination coefficientis obtained adaptively based on the smoothing percentage relative error of thetwo single forecast sub-modules as input by using the neural network as a learning algorithm.Finally,the traffic flow data are measured respectively in flat peak and peak hours to verify the validity and reliability of the model.The results show that the combination model can produce more precise forecasting than that of two individual models and adapt to different traffic states better.

Key words: intelligent transport system, traffic flow prediction, exponent smoothness method, RBF neural network

中图分类号: 

  • U491
[1] 陆化普,李瑞敏,朱茵.智能交通系统概论[M].北京:中国铁道出版社,2004.
[2] 韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532.
[3] 周小鹏,冯奇,孙立军.基于最近邻法的短时交通流预测[J].同济大学学报:自然科学版,2006,34(11):1494-1498.
[4] GAO Yang.NARMAX time series model prediction:feedforward and recurrent fuzzy neural network approaches[J].Fuzzy Sets and Systems,2005,150(2):331-350.
[5] 董春娇,邵春福,熊志华,等.基于Elman神经网络的道路网短时交通流预测方法[J].交通运输系统工程与信息,2010,10(1):145-151.
[6] BATES J M,GRANGER C W J.The combination of forecasts[J].Operational Research Quarterly,1969,20(1):451-468.
[7] 张海顺,刘慕仁,孔令江.开放边界条件下考虑安全系数交通流特性研究[J].广西师范大学学报:自然科学版,2008,26(1):11-14.
[8] RACEV S T.Handbook of heavy tailed distributions in finance[M].Rachev:Elsevier,2003:329-384.
[1] 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 28-36.
[2] 邝先验, 朱磊, 吴赟, 徐晨. 基于Adaboost算法和颜色特征的公交车辆视频检测[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 9-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发