广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (2): 167-173.

• • 上一篇    下一篇

基于凝聚层次聚类的co-location模式挖掘

高世健, 王丽珍, 冯岭, 陈红梅   

  1. 云南大学信息学院,云南昆明650091
  • 收稿日期:2011-05-07 发布日期:2018-11-19
  • 通讯作者: 王丽珍(1962—),女,云南丽江人,云南大学教授,博士。E-mail:lzhwang2005@126.com
  • 基金资助:
    国家自然科学基金资助项目(61063008);云南省教育厅研究基金资助项目(09Y0048);云南大学科学研究基金资助项目(2009F29Q)

Co-location Patterns Mining Based on Agglomerative Hierarchical Clustering

GAO Shi-jian, WANG Li-zhen, FENG Ling, CHEN Hong-mei   

  1. School of Information Science and Engineering,Yunnan University,Kunming Yunnan 650091,China
  • Received:2011-05-07 Published:2018-11-19

摘要: 空间的co-location模式代表一组空间对象的子集,它们的实例在空间中频繁地关联,它是空间数据挖掘的重要研究方向。本文首先介绍co-location模式挖掘的基本算法,然后提出一种新的挖掘算法,算法先对空间数据进行凝聚层次聚类,在聚类结果上挖掘co-location模式,最后对这种新的算法作实验评估。

关键词: 空间数据挖掘, co-location模式, 凝聚层次聚类, 参与度

Abstract: Spatial co-location patterns represent the subsets of features whose instances are frequently located together in geographic space.It is an important research in the spatial data mining.Firstly,this paper introduces thebasic algorithms of co-location mining.Secondly,a new algorithm is proposed,which clusters the spatial data by the agglomerative hierarchical clustering algorithm,and mines co-location patterns based on the clustering result.Finally,the experimental evaluations of the new algorithm are presented.

Key words: spatial data mining, co-location patterns, agglomerative hierarchical clustering, participation index

中图分类号: 

  • TP392
[1] 包玉珍,王丽珍,周丽华.空间co-location模式挖掘算法介绍及应用[J].郑州大学学报:理学版,2007,39(3):84-88.
[2] WANG Li-zhen,BAO Yu-zhen,LU Joan,et al.A web-based visual spatial co-location patterns' mining prototype system (SCPMiner)[C]//Proceeding ofthe 2008 IEEE International Conference on CyberWorlds.Piscataway,NJ:IEEE Computer Society Press,2008:675-681.
[3] MORIMOTO Y.Mining frequent neighboring class sets in spatial databases[C]//Proceeding of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2001:353-358.
[4] HAN Jia-wei,KAMBER M.Data mining:concepts and techniques[M].2nd ed.Beijing:China Machine Press,2006.
[5] 王丽珍,周丽华,陈红梅,等.数据仓库与数据挖掘原理及应用[M].北京:科学出版社,2009:218-226.
[6] HUANG Yan,SHEKHAR S,XIONG Hui.Discovering co-location patterns from spatial data sets:a general approach[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1472-1485.
[7] YOO J S,SHEKHAR S,SMITH J,et al.A partial join approach for mining co-location patterns[C]//Proceeding of the 12th Annual ACM International Workshop and GeographicInformation Systems.New York:ACM Press,2004:241-249.
[8] YOO J S,SHEKHAR S,CELIK M.A join-less approach for co-location pattern mining:a summary of results[C]//Proceeding of the 5th IEEE International Conference on Data Mining (ICDM 2005).Piscataway,NJ:IEEE Computer Society Press,2005:813-816.
[9] CELIK M,KANG J M,SHEKHAR S.Zonal co-location pattern discovery with dynamic parameters[C]//Proceeding of the 7th IEEE International Conferenceon Data Mining (ICDM 2007).Piscataway,NJ:IEEE Press,2007:433-438.
[10] HUANG Yan,ZHANG Pu-sheng.On the relationships between clusteringand spatial co-location pattern mining[C]//Proceeding of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 06).Piscataway,NJ:IEEE Computer Society Press,2006:513-522.
[11] XIAO Xiang-ye,XIE Xing,LUO Qiong,et al.Density based co-location pattern discovery[C]//Proceeding of the 16th ACM International Conference onAdvances in Geographic Information Systems (GIS'08).Irvine,CA:ACM Press,2008:11-20.
[12] WANG Li-zhen,ZHOU Li-hua,LU Joan.An order-clique-based approach for mining maximal co-location[J].Information Sciences,2009,179(19):3370-3382.
[13] 王丽珍,陆叶,陈红梅,等.基于前缀树结构的空间co-location模式挖掘算法研究[J].计算机研究与发展,2010,47(S1):370-377.
[1] 王齐, 刘全明. 改进的基于文本节点的XML文档查询方法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 157-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发