广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 161-170.doi: 10.16088/j.issn.1001-6600.2022102004

• 研究论文 • 上一篇    下一篇

应用代谢组学技术预测啤酒发酵过程中的腐败菌

郭永昊, 刘储睿, 孙珍*   

  1. 大连工业大学 生物工程学院,辽宁 大连 116033
  • 收稿日期:2022-10-20 修回日期:2022-11-23 发布日期:2023-10-09
  • 通讯作者: 孙珍(1986—),女,安徽马鞍山人,大连工业大学副教授,博士。E-mail:sunzhen@dlpu.edu.cn
  • 基金资助:
    国家自然科学基金(31601458)

Applying Metabonomics to Predict the Spoilage Bacteria in Beer Fermentation

GUO Yonghao, LIU Churui, SUN Zhen*   

  1. School of Biological Engineering, Dalian Polytechnic University, Dalian Liaoning 116033, China
  • Received:2022-10-20 Revised:2022-11-23 Published:2023-10-09

摘要: 通过超高效液相四级杆飞行时间串联质谱(UPLC-Q-TOF-MS)的非靶向质谱分析结合机器学习的方法能够预测啤酒是否感染腐败菌。在啤酒发酵过程中,分别添加短乳杆菌Lactobacillus brevis、芽孢杆菌Bacillus、植物乳杆菌Lactobacillus parabuchneri、类布氏乳杆菌Lactobacillus plantarum和葡萄球菌Staphylococcus saprophyticu等啤酒腐败菌的样品并进行代谢组学分析,随后,采用随机森林模型分析代谢组学数据,选取模型的前30%重要特征物质进行通路富集分析。最终发现,发酵初期,胆碱、甘油磷酸胆碱、三乙醇胺、磷脂酰乙醇胺和2-(3-羧基丙酰基)-6-羟基-环六-2,4-二烯羧酸(SHCHC)这些代谢物在腐败啤酒样品比正常啤酒样品中的含量增加,其中:36~48 h腐败啤酒中胆碱的含量高于正常啤酒50%~130%;甘油磷酸胆碱在发酵24 h腐败啤酒中比正常啤酒的含量低10%~30%,随着发酵时间延长,逐渐增加到高于正常啤酒9%以上;三乙醇胺在24 h正常啤酒中的含量最高,比腐败啤酒中的含量高出2~3倍;磷脂酰乙醇胺在96 h时的腐败啤酒中含量比正常啤酒高出6%~13%;SHCHC仅在36 h时的腐败啤酒中检测到。这些物质可以作为啤酒腐败的生物标记物。

关键词: 机器学习, 啤酒腐败菌, 代谢组学

Abstract: Non-targeted mass spectrometry analysis based on ultra high performance liquid chromatography-quadrupole-time of flight-tandem mass spectrometry (UPLC-Q-TOF-MS) combined with machine learning can predict whether beer is infected by spoilage bacteria. The metabonomics was used to analyze beer spoilage bacteria such as Lactobacillus brevis, Bacillus, Lactobacillus parabuchneri, Lactobacillus plantarum and Staphylococcus saprophyticus during beer fermentation. The metabonomics data was then analyzed by the multivariate analysis method of random forest. The first 30% of the important characteristic substances of the model were selected for pathway enrichment analysis. Finally, it was found that in the initial stage of fermentation, the contents of choline, choline glycerophosphate, triethanolamine, phosphatidylethanolamine and 2-(3-carboxylpropionyl)-6-hydroxy-cyclohexa-2,4-dicarboxylic acid (SHCHC) in spoiled beer samples were higher than those in normal beer samples. The contents of choline in spoiled beer with 36-48 h fermentation were 50% - 130% higher than those in normal beer samples; The content of glycerophosphate choline in spoiled beer with 24 h fermentation was 10% - 30% lower than that in normal beer. As the fermentation goes on, the content of glycerophosphate choline in spoiled beer gradually increased to more than 9% higher than that in normal beer; The content of triethanolamine in normal beer with 24 h fermentation was the highest, which was 2-3 times higher than that in spoiled beer; Phosphatidylethanolamine in spoiled beer was 6% - 13% higher than that in normal beer with 96 h fermentation; SHCHC was also only detected in spoiled beer with 36 h fermentation. These substances could be used as biomarkers of beer spoilage.

Key words: machine learning, beer spoilage bacteria, metabonomics

中图分类号:  TS207.4

[1] 李宪臻,王伟,蒋宝航,等.啤酒花抗性机制的研究进展[J].微生物学杂志,2015,35(5):1-7.DOI: 10.3969/j.issn.1005-7021.2015.05.001.
[2] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052.
[3] 张雪.发酵过程中腐败菌对啤酒成分影响的研究[D].大连:大连工业大学,2021:1-4.DOI: 10.26992/d.cnki.gdlqc.2021.000440.
[4] MUNFORD A R G, CHAVES R D, SANT’ANA A S. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast[J]. Food Microbiology, 2020, 91: 103513. DOI: 10.1016/j.fm.2020.103513.
[5] 李慧帆,张雪,王越,等.超高效液相色谱-四极杆-飞行时间质谱联用技术分析啤酒生产中污染短乳杆菌49非挥发性化学成分的差异[J].食品科技,2022,47(3):330-337.DOI: 10.13684/j.cnki.spkj.2022.03.026.
[6] SUZUKI K, IIJIMA K, SAKAMOTO K, et al. A review of hop resistance in beer spoilage lactic acid bacteria[J]. Journal of the Institute of Brewing, 2006, 112(2): 173-191. DOI: 10.1002/j.2050-0416.2006.tb00247.x.
[7] 钟成,刘伶普,李清亮,等.采用代谢组学分析技术分析工业啤酒发酵过程中风味物质生成规律[J].中国生物工程杂志,2016,36(12):49-58.DOI: 10.13523/j.cb.20161208.
[8] HASELEU G, LAGEMANN A, STEPHAN A, et al. Quantitative sensomics profiling of hop-derived bitter compounds throughout a full-scale beer manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7930-7939. DOI: 10.1021/jf101326v.
[9] HUGHEY C A, MCMINN C M, PHUNG J. Beeromics: from quality control to identification of differentially expressed compounds in beer[J]. Metabolomics, 2016, 12(1): 11. DOI: 10.1007/s11306-015-0885-5.
[10] MAROVA I, PARILOVA K, FRIEDL Z, et al. Analysis of phenolic compounds in lager beers of different origin: a contribution to potential determination of the authenticity of Czech beer[J]. Chromatographia, 2011, 73(1): 83-95. DOI: 10.1007/s10337-011-1916-7.
[11] ANDRÉS-IGLESIAS C, BLANCO C A, BLANCO J, et al. Mass spectrometry-based metabolomics approach to determine differential metabolites between regular and non-alcohol beers[J]. Food Chemistry, 2014, 157: 205-212. DOI: 10.1016/j.foodchem.2014.01.123.
[12] 王树庆.啤酒酿造中的微生物污染[J].酿酒,2008,35(1):50-54.DOI: 10.3969/j.issn.1002-8110.2008.01.023.
[13] 朱林江,郑飞云,李崎,等.啤酒腐败菌的检测方法[J].食品科学,2007,28(1):360-366.DOI: 10.3321/j.issn:1002-6630.2007.01.092.
[14] 徐岩,张丽苹,顾国贤.啤酒酿造中腐败细菌的研究[J].酿酒,2000,141(6):68-72.
[15] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052.
[16] 张全斌,李艳琴.啤酒腐败菌分子检测技术的研究进展[J].食品与药品,2007,9(6A):55-57.DOI: 10.3969/j.issn.1672-979X.2007.06.019.
[17] 王越,张俊鹏,张雪,等.基于UPLC-Q-TOF-MS技术分析不同品牌啤酒中非挥发性化学成分的差异[J].食品研究与开发,2022,43(1):173-179.DOI: 10.12161/j.issn.1005-6521.2022.01.025.
[18] YANG Z L, SHI Y Q, LI P L, et al. Application of principal component analysis (PCA) to the evaluation and screening of multiactivity fungi[J]. Journal of Ocean University of China, 2022, 21(3): 763-772. DOI: 10.1007/s11802-022-5096-x.
[19] JIANG L, SULLIVAN H, WANG B. Principal component analysis (PCA) loading and statistical tests for nuclear magnetic resonance (NMR) metabolomics involving multiple study groups[J]. Analytical Letters, 2022, 55(10): 1648-1662. DOI: 10.1080/00032719.2021.2019758.
[20] HE J F, LI Y P, ZHANG X Y, et al. Missing and corrupted data recovery in wireless sensor networks based on weighted robust principal component analysis[J]. Sensors, 2022, 22(5): 1992. DOI: 10.3390/s22051992.
[21] BRUNI V, CARDINALI M L, VITULANO D. A short review on minimum description length: an application to dimension reduction in PCA[J]. Entropy, 2022, 24(2): 269. DOI: 10.3390/e24020269.
[22] 陈华磊,杨朝霞,王成红,等.基于气相色谱-质谱联用与偏最小二乘-判别分析的啤酒爽口性评价[J].食品科学,2019,40(6):228-232.DOI: 10.7506/spkx1002-6630-20180125-343.
[23] DENG L L, GUO F J, CHENG K K, et al. Identifying significant metabolic pathways using multi-block partial least-squares analysis[J]. Journal of Proteome Research, 2020, 19(5): 1965-1974. DOI: 10.1021/acs.jproteome.9b00793.
[24] 董红瑶,王弈丹,李丽红.随机森林优化算法综述[J].信息与电脑(理论版),2021,33(17):34-37.DOI: 10.3969/j.issn.1003-9767.2021.17.011.
[25] GÖK E C, OLGUN M O. SMOTE-NC and gradient boosting imputation based random forest classifier for predicting severity level of covid-19 patients with blood samples[J]. Neural Computing & Applications, 2021, 33(22): 15693-15707. DOI: 10.1007/s00521-021-06189-y.
[26] 韩红桂,赵子凡,伍小龙,等.基于改进随机森林的城市污水处理过程运行数据清洗方法[J].北京工业大学学报,2021,47(5):421-430.DOI: 10.11936/bjutxb2020110034.
[27] 谭起龙,邓魁,李康,等.随机森林回归分析方法在代谢组学批次效应移除中的应用[J].中国卫生统计,2020,37(5):667-671.DOI: 10.3969/j.issn.1002-3674.2020.05.007.
[28] 韩敏,朱新荣.不平衡数据分类的混合算法[J].控制理论与应用,2011,28(10):1485-1489.DOI: 10.7641/j.issn.1000-8152.2011.10.CCTA100742.
[29] RACENIS P V, LAI J L, DAS A K, et al. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1992, 174(17): 5702-5710. DOI: 10.1128/jb.174.17.5702-5710.1992.
[30] BÜRGERMEISTER M, BIRNER-GRÜNBERGER R, NEBAUER R, et al. Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2004, 1686(1/2): 161-168. DOI: 10.1016/j.bbalip.2004.09.007.
[31] MARTÍNEZ-MORALES F, SCHOBERT M, LÓPEZ-LARA I M, et al. Pathways for phosphatidylcholine biosynthesis in bacteria[J]. Microbiology (Reading, England), 2003, 149(Pt12): 3461-3471. DOI: 10.1099/mic.0.26522-0.
[32] GARCÍA-ESTEPA R, ARGANDOÑA M, REINA-BUENO M, et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens[J]. Journal of Bacteriology, 2006, 188(11): 3774-3784. DOI: 10.1128/JB.00136-06.
[33] KAWAMUKAI M. Biosynthesis, bioproduction and novel roles of ubiquinone[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 511-517. DOI: 10.1016/s1389-1723(02)80188-8.
[34] 陈华磊,黄克兴,郑敏,等.基于非靶向风味组学分析3种品牌啤酒的风味差异[J].食品科学,2021,42(6):223-228.DOI: 10.7506/spkx1002-6630-20200319-294.
[35] 王伟,俞志敏,侯英敏,等.产香酵母Pichia myanmarensis LX15的分离纯化及对精酿啤酒风味物质形成的影响[J].微生物学杂志,2018,38(4):34-40.DOI: 10.3969/j.issn.1005-7021.2018.04.005.
[36] WANG Y T, YANG Z X, PIAO Z H, et al. Prediction of flavor and retention index for compounds in beer depending on molecular structure using a machine learning method[J]. RSC Advances, 2021, 11(58): 36942-36950. DOI: 10.1039/d1ra06551c.
[37] YU Z M, LUO Q Y, XIAO L, et al. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality[J]. Food Science & Nutrition, 2019, 7(12): 3950-3957. DOI: 10.1002/fsn3.1256.
[38] WANG W, LIU Y W, SUN Z, et al. Hop resistance and beer-spoilage features of foodborne Bacillus cereus newly isolated from filtration-sterilized draft beer[J]. Annals of Microbiology, 2017, 67(1): 17-23. DOI: 10.1007/s13213-016-1232-4.
[39] GEISSLER A J, BEHR J, VON KAMP K, et al. Metabolic strategies of beer spoilage lactic acid bacteria in beer[J]. International Journal of Food Microbiology, 2016, 216: 60-68. DOI: 10.1016/j.ijfoodmicro.2015.08.016.
[1] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18.
[2] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57-67.
[3] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98.
[4] 张永生, 朱文焌, 史若琪, 杜振华, 张瑞, 王志. 基于可信度的Android恶意代码多模型协同检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 19-28.
[5] 林越, 刘廷章, 王哲河. 具有两类上限条件的虚拟样本生成数量优化[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 142-148.
[6] 张仁津, 唐翠芳, 刘彬. 基于人工神经网络游戏程序的研究和设计[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 119-124.
[7] 夏佞, 林鸿飞, 杨志豪, 李彦鹏. 基于扩展语义特征机器学习消歧的基因提及标准化[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 144-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[3] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[4] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[5] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[6] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[7] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[8] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[9] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
[10] 刘美余, 张进燕, 周童曦, 廖广凤, 杨新洲, 卢汝梅. 匙羹藤中一个新的C21甾体糖苷及其降血糖活性[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 96 -104 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发