广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 123-133.doi: 10.16088/j.issn.1001-6600.2022092101

• 研究论文 • 上一篇    下一篇

基于MaxEnt模型的黄腹角雉潜在生境预测

庞丽芳1, 庾太林1,2*   

  1. 1.广西师范大学 生命科学学院,广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006
  • 收稿日期:2022-09-21 修回日期:2022-12-13 发布日期:2023-10-09
  • 通讯作者: 庾太林(1963—),男,广西全州人,广西师范大学教授。E-mail:yutail@163.com
  • 基金资助:
    国家自然科学基金(31160426)

Prediction of Potential Habitat for Tragopan caboti Based on MaxEnt Model

PANG Lifang1, YU Tailin1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2022-09-21 Revised:2022-12-13 Published:2023-10-09

摘要: 保护濒危野生动植物是推进生态文明建设的重点任务之一,是进行生物资源深入研究、开发和制定保护战略的基础。由于栖息地的破坏,中国特有种黄腹角雉Tragopan caboti被列为易危等级。本研究基于筛选的298个黄腹角雉分布点和12个环境因子,利用MaxEnt模型预测该物种的潜在适宜生境。结果发现:1)影响黄腹角雉分布的主要环境因素是降水、气温和植被类型;2)黄腹角雉的潜在生境总面积约66.76×104 km2,低适生生境面积约33.38×104 km2,中适生生境面积约20.04×104 km2,高适生生境面积约13.34×104 km2;3)黄腹角雉潜在高适宜生境的分布与其分布密度高度吻合,主要集中在闽北地区和桂东北地区。因此,建议加强对闽北地区和桂东北地区等高适宜生境的保护力度。

关键词: 黄腹角雉, 环境因子, 潜在生境分布, MaxEnt模型

Abstract: Protecting the habitats of endangered wildlife is the basis for intensive research, development and protection of biological resources, which is one of the key tasks in promoting the construction of ecological civilization. The endemic birds, Tragopan caboti has been included in the list of vulnerable species in the International Union for Conservation of Nature for habitat loss and fragmentation. Based on 298 distribution screened records and 12 environmental factors, the potentially suitable habitats of the T. caboti was predicted using MaxEnt model. The results showed that: 1) The distribution of the T. caboti was mainly affected by precipitation, atmospheric temperature and vegetation types. 2) The total potentially habitats area of the T. caboti was 66.76×104 km2. Specifically, the low suitable habitats, medium suitable habitats and high suitable habitats were about 33.38×104 km2, 20.04×104 km2, 13.34×104 km2, respectively. 3) The distribution of potential habitats had a high overlap with the actual distribution density. Furthermore, the high suitable habitats were mainly concentrated in Northern Fujian and Northeast Guangxi. Therefore, great attention should be paid to the conservation of T. caboti’s highly-suitable habitat, such as in northern Fujian and northeast Guangxi, China.

Key words: Tragopan caboti, environment factor, distribution of potential habitats, MaxEnt model

中图分类号:  Q958

[1] 张东秋, 石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.DOI:10.3321/j.issn:1001-8166.2005.07.012.
[2] FUNG T, VERMA S, CHISHOLM R A. Probability distributions of extinction times, species richness, and immigration and extinction rates in neutral ecological models[J]. Journal of Theoretical Biology, 2020, 485: 110051. DOI: 10.1016/j.jtbi.2019.110051.
[3] 杨楠,马东源,钟雪,等.基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J].生态学报,2020,40(19):7064-7072.DOI:10.5846/stxb201908081666.
[4] WAGNER D L. Insect declines in the Anthropocene[J]. Annual Review of Entomology, 2020, 65: 457-480. DOI: 10.1146/annurev-ento-011019-025151.
[5] SOROYE P, NEWBOLD T, KERR J. Climate change contributes to widespread declines among bumble bees across continents[J]. Science, 2020, 367(6478): 685-688. DOI: 10.1126/science.aax8591.
[6] Intergovernmental Panel on Climate Change. Climate change 2013-the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014.
[7] QIN H, DONG G, ZHANG Y B, et al. Patterns of species and phylogenetic diversity of Pinus tabuliformis forests in the eastern Loess Plateau, China[J]. Forest Ecology and Management, 2017, 394: 42-51. DOI: 10.1016/j.foreco.2017.03.030.
[8] ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326-1334. DOI: 10.1016/j.scitotenv.2018.04.112.
[9] FLOWERDEW J R. Reviewed work: small mammals: their productivity and population dynamics[J]. Journal of Applied Ecology, 1976, 13(3): 991-992. DOI: 10.2307/2402272.
[10] 吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报,2009,18(2):693-703.DOI:10.3969/j.issn.1674-5906.2009.02.056.
[11] 朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98.DOI:10.3724/SP.J.1003.2013.09106.
[12] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
[13] 方亦午,刘乐乐,郭恺,等.基于MaxEnt的苹果根结线虫在中国的适生区预测[J].植物检疫,2020,34(5):68-73.DOI:10.19662/j.cnki.issn1005-2755.2020.00.026.
[14] 翁国杭,姜武,包其敏,等.浙江乌岩岭国家级自然保护区黄腹角雉分布范围[J].浙江农林大学学报,2022,39(3):582-589.DOI:10.11833/j.issn.2095-0756.20210456.
[15] 张雁云.黄腹角雉研究概述[J].动物学杂志,2005,40(1):104-107.DOI:10.3969/j.issn.0250-3263.2005.01.020.
[16] 陈方敏,徐明策,李俊祥.中国东部地区常绿阔叶林景观破碎化[J].生态学杂志,2010,29(10):1919-1924.DOI:10.13292/j.1000-4890.2010.0266.
[17] 程松林,毛夷仙,晏雨鸿.黄腹角雉在江西省的地理分布与保护建议[J].野生动物,2013,34(2):84-88.DOI:10.3969/j.issn.1000-0127.2013.02.007.
[18] 郑光美,赵欣如,宋杰,等.黄腹角雉的繁殖生态研究[J].生态学报,1985,5(4):379-385,392.
[19] 孟艺宏,徐璕,姜小龙,等.双花木属植物潜在分布区模拟与分析[J].生态学报,2019,39(8):2816-2825.DOI:10.5846/stxb201805311203.
[20] 叶兴状,张明珠,赖文峰,等.基于MaxEnt优化模型的闽楠潜在适宜分布预测[J].生态学报,2021,41(20):8135-8144.DOI:10.5846/stxb202007131822.
[21] 刘雷雷,郑方东,李佳琦,等.浙江乌岩岭自然保护区黄腹角雉适宜栖息地的选择[J].生态学杂志,2019,38(10):3123-3128.DOI:10.13292/j.1000-4890.201910.029.
[22] 王德良,辜娇峰,何平.八大公山红腹角雉对植被因素选择的分析[J].山东大学学报(理学版),2009,44(3):17-21.
[23] 夏珊珊,胡大明,邓玥,等.同域分布红腹锦鸡和红腹角雉在不同空间尺度下的生境分化[J].生态学报,2019,39(5):1627-1638.DOI:10.5846/stxb201809051894.
[24] LOBO J M, JIMÉNEZ-VALVERDE A, HORTAL J. The uncertain nature of absences and their importance in species distribution modelling[J]. Ecography, 2010, 33(1): 103-114. DOI: 10.1111/j.1600-0587.2009.06039.x.
[25] HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978. DOI: 10.1002/joc.1276.
[26] FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. DOI: 10.1002/joc.5086.
[27] TATEISHI R, URIYANGQAI B, AL-BILBISI H, et al. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 2011, 4(1): 22-49. DOI: 10.1080/17538941003777521.
[28] TATEISHI R, HOAN N, KOBAYASHI T, et al. Production of global land cover data-GLCNMO2008[J]. Journal of Geography and Geology, 2014, 6(3): 99-122. DOI: 10.5539/jgg.v6n3p99.
[29] KOBAYASHI T, TATEISHI R, ALSAAIDEH B, et al. Production of global land cover data-GLCNMO2013[J]. Journal of Geography and Geology, 2017, 9(3): 1-15. DOI: 10.5539/jgg.v9n3p1.
[30] VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 2016, 7: 12558. DOI: 10.1038/ncomms12558.
[31] VENTER O, SANDERSON E W, MAGRACH A, et al. Last of the wild project, version 3 (LWP-3): 2009 human footprint, 2018 release[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H46T0JQ4. DOI: 10.7927/H46T0JQ4.
[32] Wildlife Conservation Society-WCS, Center for International Earth Science Information Network -CIESIN-Columbia University. Last of the wild project, version 2, 2005 (LWP-2): global human influence index (HII) dataset (geographic)[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H4BP00QC. DOI: 10.7927/H4BP00QC.
[33] Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded population of the world, version 4 (GPWv4): population density adjusted to Match 2015 revision UN WPP country totals, revision 11[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H4F47M65. DOI: 10.7927/H4F47M65.
[34] 王茹琳,李庆,封传红,等.基于MaxEnt的西藏飞蝗在中国的适生区预测[J].生态学报,2017,37(24):8556-8566.DOI:10.5846/stxb201611152326.
[35] WANG R L, YANG H, LUO W, et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model[J]. PeerJ, 2019, 7: e7323. DOI: 10.7717/peerj.7323.
[36] FLETCHER R J, HEFLEY T J, ROBERTSON E P, et al. A practical guide for combining data to model species distributions[J]. Ecology, 2019, 100(6): e02710. DOI: 10.1002/ecy.2710.
[37] 塔旗,李言阔,范文青,等.基于最大熵生态位模型的中华穿山甲潜在适宜生境预测[J].生态学报,2021,41(24):9941-9952.DOI:10.5846/stxb202009152403.
[38] 钱法文,郑光美.黄腹角雉的栖息地研究[J].北京师范大学学报(自然科学版),1993,29(2):256-264.
[39] 韩梦阳,詹黎明,承勇,等.江西井冈山国家级自然保护区黄腹角雉冬季栖息地适宜性评估[J].林业资源管理,2014(6):146-152.DOI:10.13466/j.cnki.lyzygl.2014.06.030.
[40] 章庆辰,高素华,段运怀,等.我国热带、亚热带农业气候资源及其合理利用[J].自然资源,1983(1):67-74.
[41] 赵芳,张百平,朱连奇,等.秦巴山地垂直带谱结构的空间分异与暖温带-亚热带界线问题[J].地理学报,2019,74(5):889-901.DOI:10.11821/dlxb201905004.
[42] 程松林,方毅,程林,等.江西武夷山自然保护区的雉类资源及其保护[J].海南师范大学学报(自然科学版),2009,22(1):83-85.DOI:10.3969/j.issn.1674-4942.2009.01.021.
[43] 王岩,林炳青,潘卫华,等.武夷山北段地形对闽北不同时间尺度降水的影响分析[J].海峡科学,2019(5):3-9. DOI: 10.3969/j.issn.1673-8683.2019.05.001.
[44] 王海伦,王金叶,闫文德,等.广西猫儿山国家级自然保护区森林生态系统生态服务价值评估[J].桂林理工大学学报,2018,38(1):117-123.DOI:10.3969/j.issn.1674-9057.2018.01.017.
[45] 广西壮族自治区地方志编纂委员会.广西数字方志馆[EB/OL].[2022-11-11].http://gxszfzg.gxdfz.org.cn/templates/fzgmenhu/viewTxt.html?id=212&title=%E8%87%AA%E7%84%B6%E5%9C%B0%E7%90%86%E5%BF%97.
[46] WAN J Z, WANG C J, YU F H, et al. Impacts of the spatial scale of climate data on the modeled distribution probabilities of invasive tree species throughout the world[J]. Ecological Informatics, 2016, 36: 42-49. DOI: 10.1016/j.ecoinf.2016.10.001.
[47] 张晓玲,李亦超,王芸芸,等.未来气候变化对不同国家茶适宜分布区的影响[J].生物多样性,2019,27(6):595-606.DOI:10.17520/biods.2019085.
[48] KOMORI O, EGUCHI S, SAIGUSA Y, et al. Sampling bias correction in species distribution models by quasi-linear Poisson point process[J]. Ecological Informatics, 2020, 55: 101015. DOI: 10.1016/j.ecoinf.2019.101015.
[49] 郭彦龙,赵泽芳,乔慧捷,等.物种分布模型面临的挑战与发展趋势[J].地球科学进展,2020,35(12):1292-1305.DOI: 10.11867/j.issn.1001-8166.2020.110.
[1] 黄玉莹, 赵银军, 谢琼英, 童凯, 邓齐玉, 梁玉莲. 北部湾经济区TRMM降水数据空间降尺度研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 163-169.
[2] 张浩然,蔡德所,林金城,沈炜,黄焜. 龙江与刁江底栖硅藻群落结构及影响因子[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 132-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[3] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[4] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[5] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[6] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[7] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[8] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[9] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
[10] 刘美余, 张进燕, 周童曦, 廖广凤, 杨新洲, 卢汝梅. 匙羹藤中一个新的C21甾体糖苷及其降血糖活性[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 96 -104 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发