|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 62-68.doi: 10.16088/j.issn.1001-6600.2020091101
钟丽明, 范江华*
ZHONG Liming, FAN Jianghua*
摘要: 研究向量优化问题解集的连通性。利用标量化方法,讨论了无界闭凸集上凸向量优化问题弱有效解集的连通性。在向量值函数为锥下半连续、锥凸时,运用极锥的紧凸基的连通性,证明了解集映射是上半连续映射,从而得到解集的连通性;在向量值函数为锥下半连续、锥严格凸时,得到了凸向量优化问题弱有效解集的道路连通性;得到了复合多目标规划问题的弱有效解集与仿射向量变分不等式问题弱有效解集的连通性。
中图分类号:
[1]WARBURTON A R. Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives[J]. Journal of Optimization Theory and Applications, 1983, 40(4): 537-557. [2]HELBIG S. On the connectedness of the set of weakly efficient points of a vector optimization problem in locally convex spaces[J]. Journal of Optimization Theory and Applications, 1990, 65(2): 257-270. [3]HU Y D, SUN E J. Connectedness of the efficient set in strictly quasiconcave vector maximization[J]. Journal of Optimization Theory and Applications, 1993, 78(3): 613-622. [4]CHEN G Y, LI S J. Existence of solutions for a generalized vector quasivariational inequality[J]. Journal of Optimization Theory and Applications, 1996, 90(2): 321-334. [5]GONG X H, YAO J C. Connectedness of the set of efficient solutions for generalized systems[J]. Journal of Optimization Theory and Applications, 2008, 138(2): 189-196. [6]曹敏, 陈剑尘, 高洁. 集值优化问题强有效解集的连通性[J]. 数学的实践与认识, 2014, 44(9): 253-258. [7]巨兴兴,陈加伟,张俊容,等.含参广义向量均衡问题近似解集的连通性[J]. 应用数学和力学, 2018, 39(10): 1206-1212. [8]XU Y D, ZHANG P P. Connectedness of solution sets of strong vector equilibrium problems with an application[J]. Journal of Optimization Theory and Applications, 2018, 178(1): 131-152. [9]李科科,彭再云,赵勇,等.含参广义集值强向量平衡问题的稳定性[J]. 数学学报,2019,62(4): 653-662. [10]FLORES-BAZAN F, VERA C. Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization[J]. Journal of Optimization Theory and Applications, 2006, 130(2): 185-207. [11]CHEN Z. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization, 2013, 55(3): 507-520. [12]LEE G M, BU I J. On solution sets for affine vector variational inequality[J]. Nonlinear Analysis: Theory Methods Applications, 2005, 63(5/6/7): 1847-1855. [13]AUBIN J P, EKELAND I.Applied nonlinear analysis[M].New York:Wiley, 1984. [14]LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis: Theory Methods Applications, 1998, 34(5): 745-765. [15]AUSLENDER A, TEBOULLE M. Asymptotic cones and functions in optimization and variational inequalities[M]. New York: Springer, 2003. [16]DENG S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real Banach spaces[J]. Journal of Optimization Theory and Applications, 2009, 140(1): 1-7. [17]SALINETTI R, WETS J B. On the relations between two types of convergence for convex functions[J]. Journal of Mathematical Analysis and Applications, 1977, 60(1): 211-226. |
[1] | 陈燕, 吴文康, 梁俊斌. Sink移动无线传感网中高安全性密钥预分配方案[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 164-168. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |