Journal of Guangxi Normal University(Natural Science Edition) ›› 2013, Vol. 31 ›› Issue (4): 66-70.
Previous Articles Next Articles
KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling
CLC Number:
[1] LI Tien-yien,YORKE J A.Period three implies chaos[J].Amer Math Monthly,1975,82(10):985-992. [2] SCHWEIZER B,SMITAL J.Measure of chaos and a spectral decomposition of dynamical systems on the interval[J].Trans Amer Math Soc,1994,344(2):737-754. [3] OPROCHA P.Relations between distributional and Devaney chaos[J].Chaos,2006,16(3):033112. [4] LIAO Gong-fu,CHU Zhen-yan,FAN Qin-jie.Relations between mixing and distributional chaos[J].Chaos,Solitions and Fractals,2009,41(4):1994-2000. [5] LI Shi-hai.ω-Chaos and topological entropy[J].Trans Amer Math Soc,1993,339(1):243-249. [6] GENG Xiang-yi.Chaos for the factors of one-sides shift[J].Songliao Journal:Natural Science Edition,1999(1):18-19. [7] 廖公夫,汪威,范钦杰.一类非本原代换与混沌[J].数学年刊,2009,30A(2):183-188. [8] 周作领.符号动力系统[M].上海:上海科技教育出版社,1997:18-20. [9] 范钦杰,王辉.强非游荡集与分布混沌(Ⅱ)[J].吉林大学学报:理学版,2012,50(2):278-280. [10] 廖公夫,王立冬.几乎周期性与SS混沌集[J].数学年刊,2001,23A(6):685-692. |
[1] | LIU Long-sheng, KANG Yun-lian, ZHAO Jun-ling. Li-Yorke Chaotic Set and ω-Chaotic Set of the Generalized Symbolic Dynamical Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 75-81. |
[2] | DENG Jin-hong, ZHAO Jun-ling. SS Chaotic Set in Set of Non-recurrent Points [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 40-44. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|