Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (2): 21-25.
Previous Articles Next Articles
LIANG Deng-feng1, YU Xin-yan2, QIN Le-yang2
CLC Number:
[1] MORETó A.An answer to a question of Isaacs on character degree graphs[J].Adv Math,2006,201(1):90-101. [2] MORETó A,SANUS L.Character degree graphs,normal subgroups and blocks[J].J Group Theory,2005,8(4):461-465. [3] ISAACS I M.Character degree graph and normal subgroups[J].Trans AmerSoc,2004,356(3):1155-1183. [4] LIANG Deng-feng,SHI Wu-jie.A graph associated with |cd(G)|-1 degrees of a solvable group[J].J Math Research and Exposition,2011,31(1):180-182. [5] 梁登峰,李士恒,施武杰.李型单群的一种特征标次数图[J].西南师范大学学报:自然科学版,2011,36(1):26-30. [6] 梁登峰,李士恒,施武杰.交错单群的一种特征标次数图[J].西南师范大学学报:自然科学版,2010,35(1):1-5. [7] MANZ O,WOLF T R.Representations of solvable groups[M].Cambridge:Cambridge University Press,1993:2-254. [8] LEWIS M L.Bounding Fitting heights of character degree graphs[J].J Algebra,2001,242(2):810-818. [9] ISAACS I M.Character theory of finite groups[M].Waltham,MA:AcademicPress,1976:78-216. [10] LEWIS M L.Solvable groups whose degree graphs have two connected components[J].J Group Theory,2001,4(3):255-275. [11] 徐明曜.有限群导引:上册[M].2版.北京:科学出版社,2001:112. |
No related articles found! |
|