Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (1): 29-34.
Previous Articles Next Articles
ZHAO Hui-wei1, LI Wen-hua1, FENG Chun-hua1, LUO Xiao-shu2
CLC Number:
[1] RUIZ A,OWENS D H,TOWNLEY S.Existence,learning,and replication of periodic motion in recurrent neural networks[J].IEEE Transactions on Neural Networks,1998,9(4):651-661. [2] TOWNLEY S,ILCHMANN A,WEISSM G,et al.Existence and learning of oscillations in recurrent neural networks[J].IEEE Transactions on Neural Networks,2000,11(1):205-214. [3] BéLAIR J,CAMPBELL S A,van den DRIESSCHE P.Frustration stabilityand delay-induced oscillations in a neural network model[J].SIAM J Appl Math,1996,56(1):245-255. [4] YU Wen-wu,CAO Jin-de.Stability and Hopf bifurcations on a two-neuron system with time delay in the frequency domain[J].Int J Bifur Chaos,2007,17(4):1355-1366. [5] FENG C,PLAMONDON R.Existence of oscillations in recurrent neuralnetworks with time delay models[J].DCDIS A Suppl Adv Neural Networks,2007,14(S1):111-118. [6] GAO B,ZHANG Wei-nian.Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function[J].IEEETransactions on Neural Networks,2008,19(5):782-794. [7] FENG Chun-hua,O'REILLY C,PLAMONDON R.Permanent oscillations in a3-node recurrent neural network model[J].Neurocomputing,2010,74(1/3):274-283. [8] HALE J.Theory of functional differential equations[M].New York:Springer-Verlag,1977:21-24. [9] FORTI M,TESI A.New conditions for global stability of neural networks with application to linear and quadratic programming problems[J].IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1995,42(7):354-366. [10] CHAFEE N.A bifurcation problem for a functional differential equation of finitely retarded type[J].Journal of Mathematical Analysis and Applications,1971,35(2):312-348. |
[1] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
[2] | WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e. A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 75-78. |
[3] | FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53. |
[4] | HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47. |
[5] | WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53. |
[6] | LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133. |
[7] | LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73. |
[8] | HAO Li-jie, JIANG Gui-rong, LU Peng. Pulse Control and Bifurcation Analysis of a SIRS Epidemic Model with Vertical Transmission [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 42-47. |
[9] | XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53. |
|