Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (4): 59-65.

Previous Articles     Next Articles

An Inference Prediction Method of Spatiotemporal Information of Geographical Entity Based on RBF Neural Network

LI Jing-wen1,2, WANG Ke1,2, YE Liang-song1,2, LIU Hua-yao3, WANG Han-zhao4   

  1. 1. Guangxi Mining and Environmental Science Experimental Center, Guilin University of Technology, Guilin Guangxi 541004, China;
    2. Spatial Information and Key Laboratory of Surveying and Mapping in Guangxi,Guilin University of Technology, Guilin Guangxi 541004, China;
    3. Guangxi Survey and Design Institute of Nonferrous Metals,Nanning Guangxi 530031,China;
    4. Zhengzhou Surveying and Mapping School, Zhengzhou Henan 450015,China
  • Received:2014-03-12 Published:2018-09-26

Abstract: Based on in-depth analysis of the temporal and spatial characteristics of the geographical entity, by abstracting and standardizing the geographical entity,this paper puts forword a reasoning prediction method according to the characteristics of complex geographical entity. The method focused on the predictive inference theory, model method and procedure of RBF network learning method based on temporal information of geographic entities. Through the abstract description and standardization of geographical entity object, hypersurface temporal information fusion is established. Using the strong nonlinear fitting ability of RBF neural network, a prediction and inference model is constructed with integration of a complex geographical entity with time, space and attribute information. And The method, by predicting the content of the dissloved oxygen (DO) in Lijiang River in Yangshuo section as an example, is proved to be feasible. This method provides an effective way for the intelligent decision and reasoning of spatiotemporal data processing.

Key words: spatiotemporal data, hyper surface, RBF, data reasoning

CLC Number: 

  • P208
[1] 吕效国,王金华,马阿芹,等.自回归模型的自回归分析及其应用[J].扬州大学学报:自然科学版,2010,13(3):31-33,57.
[2] 胡晓华,吉承儒,虞敏.灰色预测法的进一步推广及应用[J].大学数学,2013,29(1):117-121.
[3] 李彩虹.两类组合预测方法的研究及应用[D].兰州:兰州大学,2012.
[4] OPENSHAW S, OPENSHAW C. Artificial intelligence in geography[M]. New York: John Wiley and Sons, 1997.
[5] 黎夏,刘小平,李少英. 智能式GIS与空间优化[M]. 北京:科学出版社, 2010.
[6] 张艳秋.基于神经网络算法的知识获取研究[D].南京:南京师范大学,2011.
[7] HAYKIN S. 神经网络原理[M]. 叶世伟,史忠植,译.北京:机械工业出版社,2004:183-187.
[8] 张千宏,邵远夫,刘璟忠.随机时滞模糊细胞神经网络均方指数稳定性分析[J].江西师范大学学报:自然科学版,2013,37(2):195-198.
[9] 毋河海.关于GIS缓冲区的建立问题[J].武汉测绘科技大学学报,1997,22(4):358-366.
[10] 郭仁忠.空间分析[M].2版.北京:高等教育出版社,2001:4-7.
[11] 李景文,傅玮佳,叶良松,等.基于对象的GIS时空数据模型设计方法[J].地理与地理信息科学,2010,26(6):11-14.
[12] 周永权,戴祯杰.代数超曲面神经元的空间几何分析及其代数表示理论[J].广西科学院学报,2002,18(2):49-52.
[13] 董钧祥,李勤.基于遗传算法优化RBF网络的预测混沌时间序列[J].科技通报,2012,28(8):66-68,71.
[14] 孙毅刚,战强.一种用于径向基函数(RBF)神经网络训练的有效方法[J].哈尔滨工业大学学报,1997,29(4):103-106.
[15] HUANG Ming-yu, LIU Xing-gao, LI Jiu-bao.Melt index prediction by RBF neural network with an ICO-VSA hybrid optimization algorithm[J].Journal of Applied Polymer Science. 2012,126(2):519-526.
[16] QU Yi, LI Zhan-ming, LI Er-chao.Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks[J].ISA Transactions. 2012,51(6):786-791.
[17] 王翰钊.基于RBF网络的地理实体信息推理方法研究[D].桂林:桂林理工大学,2012: 40-42.
[18] 王翰钊. 基于神经网络推理的GIS信息预测方法[J].管理工程师,2013(3):53-55.
[1] XU Lun-hui, YOU Huang-yang. Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!