Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (3): 111-116.doi: 10.16088/j.issn.1001-6600.2015.03.017

Previous Articles     Next Articles

Resonance Rayleigh Scattering Determination of Trace Bromate in Drinking Water Using Polyvinyl Alcohol-Boric Acid-iodine System

LI Chong-ning1,2,3, TANG Xue-ping1,2,3, DENG Wen-jing1,2,3, WEN Gui-qing1,2,3, LIU Qing-ye1,2,3, LIANG Ai-hui1,2,3, JIANG Zhi-liang1,2,3   

  1. 1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education,Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Environmental Pollution ControlTheory and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    3. College of Environment andResources, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2015-04-29 Online:2015-05-10 Published:2018-09-20

Abstract: In hydrochloric acid medium containing boric acid, Mo(VI) catalyzed bromate oxidation of iodine ion to form iodine, and then it reacted with polyvinyl alcohol to form blue green complex. It exhibited a maximum absorption peak at 670 nm, and a maximum resonance scattering peak at 369nm. In the selected conditions, there was a good linear relationship between the absorbance and resonance Rayleigh scattering intensity and the concentration of a certain range of bromate. Therefore, two new methods of determination of bromate were put forward in drinking water with spectrophotometry and resonance Rayleigh scattering. By using the spectrophotometric method, the regression equation was ΔA= 0.086ρBrO-3-0.013, the linear range was from 1 to 30 μg/L, with a detection limit of 0.5 μg/L. By using the resonance Rayleigh scattering method, the regression equation was ΔI=406.44ρBrO-3+36.36, the linear range was from 0.1 to 2 μg/L, with a detection limit of 0.05 μg/L. Bromate in drinking water was determined by using resonance Rayleigh scattering method with satisfactory results.

Key words: bromate, catalysis, polyvinyl alcohol, resonance Rayleigh scattering

CLC Number: 

  • O657.3
[1] 裴义山, 杨敏, 郭召海, 等. 含溴水源水臭氧处理时溴酸盐的产生与控制[J]. 环境科学学报, 2007, 27(11): 1767-1769.
[2] KUROKAWA Y,MAEKAWA A,TAKAHASAHI M,et al. Toxicity and carcinogenicity of potassium bromate: A new renal carcinogen[J]. Environ Health Perspectives,1990,87: 309-335.
[3] WHO. Disinfection declear[S]. Geneve:Local authorities health and environment briefing pamphlet series, 1995.
[4] Federal Register. National primary drinking water regulations disinfections and disinfection by products[M]. Mexico:Bibliogov Press,1998.
[5] 中华人民共和国建设部. CJ/T206-2005[S]. 北京: 中国标准出版社, 2005.
[6] 中国国家标准化管理委员会. GB8537-2008[S]. 北京: 中国标准出版社, 2008.
[7] 沙鸥, 钱保华, 徐国想, 等. 靛红褪色分光光度法测定溴酸根离子研究[J]. 淮海工学院学报: 自然科学版, 2005, 14(4): 49-51.
[8] 陈云生, 李成, 杨胜园, 等. 茜素红褪色分光光度法测定矿泉水中痕量溴[J]. 南华大学学报:自然科学版, 2009, 23(3): 58-60.
[9] 邢志强, 康平利, 韩光喜, 等. 罗丹明B褪色光度法测定微量溴酸根离子的研究[J]. 辽宁大学学报:自然科学版, 2009, 36(2): 112-115.
[10] 崔丽英, 叶新强, 赵振平. 离子色谱法测定矿泉水中溴酸根[J]. 理化检验-化学分册, 2004, 40(4): 215-216.
[11] 李宜革. 离子色谱法测定饮水中的溴酸盐[J]. 科技创新导报, 2008(15):77.
[12] JOYCE R J, DHILLON H S. Trace level determination of bromate in ozonated drinking water using ion chromatography[J]. Journal of Chromatography, 1994,671(1/2): 165-171.
[13] 彭梦侠, 李岚. 荧光猝灭法测定饮用水中的微量溴酸根[J]. 光谱实验室,2013, 30(2):689-693.
[14] VASILIOS S H, PAVLOS E K, IOANNA I A, et al. Bromate determination in water after membrane complexation and total reflection X-ray fluorescence analysis[J]. Analysis Chemistry, 2007, 79(7): 2827-2832.
[15] 史亚利, 蔡亚岐, 牟世芬. 饮用水中痕量溴酸盐分析方法的研究进展[J]. 分析测试学报, 2007, 26(2): 282-287.
[16] 刘秀萍, 百官陈婧,路亮. 中性红褪色光度法测定痕量溴酸根[J]. 理化检验-化学分册,2009,45:1116-1117.
[17] 杨敏, 谢静, 杨树科, 等. 微波炉浓缩甲基橙光度法测定饮用水中溴酸盐的研究[J]. 分析试验室, 2012, 31(3):55-58.
[18] 刘勇, 杨利, 潘可亮, 等. 孔雀石绿共振光散射法测定饮用水中痕量BrO-3[J]. 分析试验室, 2012, 31(1):47-49.
[19] FINELY J H. Spectrophotometric determination of polyvinyl alcohol in paper coatings[J]. Analysis Chemistry, 1961, 33:1925-1929.
[20] 王静荣,李书申,张东华. 超滤法回收PVA并用于生产的扩大实验[J]. 环境化学, 1993, 12(6): 484-489.
[21] 束嘉秀, 董亦斌, 张惠芬. 分光光度法直接测定水中聚乙烯醇(PVA)含量的研究[J]. 昆明理工大学学报: 理工版, 2003, 28(5): 127-129.
[22] 刘文明, 马卫兴. 二甲酚橙褪色光度法测定微量溴酸根离子的研究[J]. 理化检验-化学分册, 1997, 33(12):539-540.
[1] LI Chongning, PAN Hongcheng, LIU Qingye, LIANG Aihui, JIANG Zhiliang. Peptide Probe Combined Nanosilver Catalytic Reaction-SurfacePlasmon Resonance Spectrophotometric Detectionfor Trace Human Chorionic Gonadotropin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 91-97.
[2] LIU Qingye, WANG Hua, HUANG Danhua, HE Shihe, LI Jiao, LUO Junheng, ZHANG Xinghui, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Determination of Trace Chromium(Ⅵ) by Carbon NanoparticlesResonance Energy Transfer Rayleigh Scattering [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 128-133.
[3] TANG Xue-ping, WANG Yao-hui, LIU Qing-ye, WEN Gui-qing, ZHANG Xing-hui,
LUO Yang-he, LIANG Ai-hui, JIANG Zhi-liang. An Analytical Platform of Nanosilver SPR Rayleigh Scatteringand Its Application to Detect N2H4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 88-95.
[4] DONG Jin-chao, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Nanocatalytic Resonance Rayleigh Scattering Determination of Trace Hemin Using Aptamer-Modified Nanogold Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!