Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (3): 61-65.doi: 10.16088/j.issn.1001-6600.2015.03.009

Previous Articles     Next Articles

The Group Inverses and Drazin Inverses of a Class of Anti-triangular Block Matrices

LIU Xi-fu   

  1. School of Science, East China Jiaotong University, Nanchang Jiangxi 330013, China
  • Received:2015-01-09 Online:2015-05-10 Published:2018-09-20

Abstract: The research on the group inverse and Drazin inverse of the anti-triangular block matrix M=PQI0 was always done under some conditions for the sub-matrices. In this paper, some results are obtained under some new conditions, namely, when P is nonsingular or ind(Q)≤1, sufficient and necessary conditions for the existence of the group inverse of M are developed and the expressions of the group inverse of M are presented. Moreover, based on the above results, the representations for Drazin inverses of M are obtained under conditions ind(P)≤1, PπQP=0 and ind(P#QPP#)≤1, or on the conditions PQQπ=0 and Q2QD+QπPQπ are nonsingular.

Key words: group inverse, Drazin inverse, anti-triangular block matrix

CLC Number: 

  • O151.21
[1] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses: theory and applications[M]. 2nd ed. New York: Springer, 2003.
[2] CAMPBELL S L. The Drazin inverse and systems of second order linear differential equations[J]. Linear Multilinear Algebra, 1983, 14(2): 195-198.
[3] YANG Hu, LIU Xi-fu. The Drazin inverse of the sum of two matrices and its applications[J]. J Comput Appl Math, 2011,235(5): 1412-1417.
[4] 刘喜富. 修正矩阵的Drazin逆[J]. 西南大学学报:自然科学版,2012, 34 (6): 74-77.
[5] BU Chang-jiang, LI Min, ZHANG Kui-ze, et al. Group inverse for the block matrices with an invertible subblock[J]. Appl Math Comput, 2009, 215(1): 132-139.
[6] BU Chang-jiang, ZHANG Kui-ze, ZHAO Jie-mei. Representations of the Drazin inverse on solution of a class singular differential equations[J]. Linear Multilinear Algebra, 2011, 59 (8): 863-877.
[7] ZHAO Jie-mei, BU Chang-jiang. Group inverse for the block matrix with two identical subblocks over skew fields[J]. Electron J Linear Algebra, 2010, 21: 63-75.
[8] LIU Xi-fu, YANG Hu. Further results on the group inverses and Drazin inverses of anti-triangular block matrices[J]. Appl Math Comput, 2012, 218(17): 8978-8986.
[9] CAO Chong-guang, ZHAO Chun-jie. Group inverse for a class of 2×2 anti-triangular block matrices over skew fields[J]. J Appl Math Comput, 2012, 40(1/2): 87-93.
[10] DENG Chun-yuan. Generalized Drazin inverses of anti-triangular block matrices[J]. J Math Anal Appl, 2010, 368(1): 1-8.
[11] DENG Chun-yuan, WEI Yi-min. A note on the Drazin inverse of an anti-triangular matrix[J]. Linear Algebra Appl, 2009, 431(10): 1910-1922.
[12] 卜长江, 赵杰梅, 姚红梅. 某些分块矩阵的Drazin逆[J]. 哈尔滨工程大学学报, 2008, 29 (7): 745-748.
[13] 姚红梅,卜长江. 一些特殊分块矩阵的群逆[J]. 哈尔滨工程大学学报, 2008, 29 (5): 529-532.
[14] TIAN Yong-ge, STYAN G P H.Rank equalities for idempotent and involutory matrices[J]. Linear Algebra Appl, 2001, 335(1/3): 101-117.
[15] MARTÍNEZ-SERRANO M F, CASTRO-GONZÁLEZ N. On the Árazin inverse of block matrices and generalized Schur complement[J]. Appl Math Comput, 2009, 215(7):2733-2740.
[1] WANG Feng. New Bounds on Eigenvalue of the Hadamard Product and the Fan Product of Matrices [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 66-70.
[2] ZHANG Ting-hai. The Perimeter and Its Preserving Operators of Rank-1 Matrices over Inclines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!