Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (1): 80-85.doi: 10.16088/j.issn.1001-6600.2015.01.013
Previous Articles Next Articles
ZHENG Li-xia1, YANG Shan-chao2, WANG Zhang-jun2
CLC Number:
[1] BAHADUR R R. A note on quantiles in large samples[J]. The Annals of Mathematical Statistics, 1966, 37(3):577-580. [2] KIEFER J. On Bahadur’s representation of sample quantiles[J]. The Annals of Mathematical Statistics, 1967, 38(5):1323-1342. [3] SEN P K. On the Bahadur representation of sample quantile for sequences of ϕ-mixing random variables[J]. Journal of Multivariate Analysis, 1972, 2(1):77-95. [4] BABU G J, SINGH K. On deviations between empirical and quantile processes for mixing random variables[J]. Journal of Multivariate Analysis, 1978, 8(4):532-549. [5] YOSHIHARA K. The Bahadur representation of sample quantile for sequences of strongly mixing random variables[J]. Statistics & Probability Letters, 1995, 24(4):299-304. [6] SUN Shu-xia. The Bahadur representation for sample quantile under week dependence[J]. Statistics & Probability Letters, 2006, 76(12):1238-1244. [7] LING Neng-xiang. The Bahadur representation for sample quantiles under negatively associated sequence[J]. Statistics & Probability Letters, 2008, 78(16):2660-2663. [8] ZHOU Yong, WU Guo-fu, LI Dao-ji. A Kernel-type estimator of a quantile function under randomly d data[J]. Acta Mathematica Scientia, 2006, 26(4):585-594. [9] YOUNDJÉ É,VIEU P. A note on quantile estimation for long-range dependent stochastic processes[J]. Statistics& Probability Letters, 2006, 76(2):109-116. [10] WEI Xiang-lan, YANG Shan-chao, YU Ke-ming, et al. Bahadur representation of linear kernel quantile estimator of VaR under α-mixing assumptions[J]. Journal Statistical Planning and Inference,2010,140(7):1620-1634. [11] 韦香兰, 杨善朝, 赵翌. α混合序列下的核型分位数估计的Bahadur表示[J]. 广西师范大学学报:自然科学版, 2008, 26(1):50-53. [12] KAIGH W D, LACHENBRUCH P A. A generalized quantile estimator[J]. Communications in Statistics:Theory and Methods, 1982, 11(19):2217-2238. [13] KAIGH W D. Quantile interval estimation[J]. Communications in Statistics: Theory and Methods, 1983, 12(21):2427-2443. [14] STIGLER S M. Linear functions of order statistics[J]. The Annals of Mathematical Statistics, 1969,40(3):770-788. [15] YANG Shie-shien. A smooth nonparametric estimator of a quantile function[J]. Journal of the American Statistical Association, 1985, 80(392):1004-1011. [16] 陈希孺. 关于U-统计量和Von-Mises统计量的极限性质[J]. 中国科学,1980(6):522-532. [17] ZELTERMAN D. Smooth nonparametric estimation of the quantile function[J]. Journal of Statistical Planning and Inference, 1990, 26(3):339-352. |
[1] | YANG Shan-chao, LIANG Dan. Strong Consistency of Frequency Polygon Density Estimator for φ Mixing Sequence [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 16-21. |
|