Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (3): 144-149.doi: 10.16088/j.issn.1001-6600.2016.03.021

Previous Articles     Next Articles

Optimization of the Cutting Propagation Conditions forBrasenia schreberi by Orthogonal Design

ZHUANG Fenghong1, MA Jiangming 1,2, MEI Junlin1, QING Yanghui1   

  1. 1.College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education),Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2016-04-15 Online:2016-09-30 Published:2018-09-17

Abstract: In order to explore the best cutting propagation method of Brasenia schreberi, orthogonal design is adopted to study the effect of Brasenia cutting survival factors and the best way to cutting from the factors such as water depth, cutting area and cutting way. The results show that Brasenia schreberi grows the best by using the middle of the branches cuttings, water depth of 8 cm and cuttings way for flat insert. After one month, the survival rate is 70%, the average growth rate of stem is 0.14 cm/d, the number of new leaves is 20 tablets/plants and the new leaves area is 119.10 cm2.

Key words: Brasenia schreberi, orthogonal experiment design, cutting propagation

CLC Number: 

  • S645.9
[1] 倪学明, 於炳, 周远捷, 等. 睡莲科的属间关系研究[J]. 武汉植物学研究, 1994, 12(4): 311-320.
[2] 吴征镒, 洪德元. 中国植物志图集[M]. 北京: 科学出版社, 2001.
[3] LEE M K, PARK H J, KWON S H, et al. Tellimoside, a flavonol glycoside from Brasenia schreberi, inhibits the growth of cyanobacterium (Microcystis aeruginosa LB 2385)[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(1): 117-121.
[4] LEGAULT J, PERSON T, MSHVILDADZE V, et al. Antioxidant and anti -inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of Brasenia schreberi[J]. Journal of Medicinal Food, 2011, 14(10): 1127-1134.
[5] 吴永尧, 彭振坤, 周大寨, 等. 莼菜富集锌的能力及其锌的分布探讨[J]. 食品科学, 2003, 24(2): 126-127.
[6] 于永福. 中国野生植物保护里程碑[J]. 植物杂志, 1999(5): 3-11.
[7] 吴云. 利川福宝山莼菜高产优质无公害栽培技术[J]. 农业科技通讯, 2009(9): 197-198.
[8] 张雷, 王凌云, 陈淑玲. 莼菜的特征特性及栽培管理技术[J]. 现代农业科技, 2015(12): 101-102.
[9] 尹明华, 洪森荣, 徐卫红. 应用正交设计法优选黄独脱毒苗快繁培养基[J]. 亚热带植物科学, 2009, 38(3): 24-26.
[10] 刘玉平, 柯卫东, 朱红莲. 莼菜栽培技术[J]. 水生蔬菜, 2009(3): 34-35.
[11] 王必尊, 何应对, 唐粉玲, 等. 基于正交试验的香蕉组培苗栽培基质筛选[J]. 广东农业科学, 2012, 39(20): 101-104.
[12] 梁玉堂, 龙庄如. 树木营养繁殖原理和技术[M]. 北京:中国林业出版社, 1993.
[13] 涂炳坤, 胡婉仪, 袁凤群. 板栗嫩枝扦插生根过程中插穗营养物质的研究[J]. 湖北林业科技, 1993(3): 8-13.
[14] 尤光远, 刘银苟, 郭德选. 樟树扦插试验报告[J]. 江西林业科技, 1990(1): 1-6.
[15] 刘德良, 金巨良. 樟树扦插试验研究[J]. 福建林学院学报, 2003, 23(2): 189-192.
[16] WANG L L,ZENG G M,LI Z W, et al. Three-Gorge Dam influences wetland macrophytes in middle and lower reaches of Yangtze[J]. Progress in Natural Science, 2007, 17(9): 1035-1041.
[17] LI W, CAO T, NI L, et al. Effects of water depth on carbon, nitrogen and phosphorus stoichiometry of five submersed macrophytes in an in situ experiment[J]. Ecological Engineering, 2013, 61(8): 358-365.
[18] 杨永清. 水位波动对水生植物生长影响的实验生态学研究[M]. 武汉: 武汉大学出版社, 2003.
[19] 李红丽, 智颖飙, 雷光春, 等. 不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局[J]. 生态学报, 2009, 29(7): 3521-3531.
[20] 刘成秀, 马祖陆. 莼菜扦插的影响因素研究[J]. 安徽农业科学, 2013, 41(4): 1812-1813.
[21] 范庭兴, 陈晓德, 杜珲. 大聚藻断枝不同扦插方式对其生长及分株繁殖的影响[J]. 北方园艺, 2014(11): 55-58.
[22] 郭云文, 苏德荣, 刘泽良. 不同因子对山荞麦扦插繁殖影响的研究[J]. 辽宁林业科技, 2008(2): 3-7.
[1] CHEN Ning, HE Mingxian, LI Yuhui, CHEN Jieping, LI Shilin, MA Jiangming. Optimization of Cutting Propagation Conditions for Alchornea trewioides by Orthogonal Design [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 128-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!