Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (3): 14-21.doi: 10.16088/j.issn.1001-6600.2017.03.002
Previous Articles Next Articles
CHEN Chunyan, XU Zhipeng, KUANG Hua*
CLC Number:
[1] ZHANG H M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model[J]. Transportation Research Part B, 2003, 37(1): 27-41. [2] ZHANG Peng, LIU Ruxun, WONG S C. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities[J]. Physical Review E, 2005, 71(5): 056704. [3] TANG Tieqiao, CHEN Liang, WU Yonghong, et al. A macro traffic flow model accounting for real-time traffic state[J]. Physica A, 2015, 437: 55-67. [4] LIU Huaqing, CHENG Rongjun, ZHU Keqiang, et al. The study for continuum model considering traffic jerk effect[J]. Nonlinear Dynamics, 2016, 83(1/2): 57-64. [5] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. J Phys I France, 1992, 2: 2221-2229. [6] 邝华, 孔令江, 刘慕仁. 多速混合车辆单车道元胞自动机交通流模型的研究[J]. 物理学报, 2004,53(9): 2894-2898. [7] LI Qilang, WONG S C, MIN Jie, et al. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability[J]. Physica A, 2016, 456: 128-134. [8] 张卫华, 颜冉, 冯忠祥, 等. 雨天高速公路车辆换道模型研究[J]. 物理学报, 2016, 65(6): 064501. [9] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. [10] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. [11] JIANG Rui, WU Qingsong, ZHU Zuojin. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64 (1): 017101(4). [12] 王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55(2): 634-640. [13] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究[J]. 物理学报, 2015, 64(15): 154503. [14] SUN Dihua, KANG Yirong, YANG Shuhong. A novel car following model considering average speed of preceding vehicles group[J]. Physica A, 2015, 436: 103-109. [15] CHEN Jianzhong, LIU Ronghui, NGODUY Dong, et al. A new multi-anticipative car-following model with consideration of the desired following distance[J]. Nonlinear Dynamics, 2016, 85(4): 2705-2717. [16] LI Zhipeng, XU Xun, XU Shangzhi, et al. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 132-145. [17] GE Hongxia, DAI Shiqiang, DONG Liyun. An extended car-following model based on intelligent transportation system application[J]. Physica A, 2006, 365(2): 543-548. [18] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. A new car-following model with consideration of inter-vehicle communication[J]. Nonlinear Dynamics, 2014, 76(4): 2017-2023. [19] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. An extended car-following model with consideration of the reliability of inter-vehicle communication[J]. Measurement, 2014, 58: 286-293. [20] KUANG Hua, XU Zhipeng, LI Xingli, et al. An extended car-following model accounting for the average headway effect in intelligent transportation system[J]. Physica A, 2017, 471: 778-787. [21] YU Shaowei, SHI Zhongke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A, 2015, 428: 206-223. [22] YU Shaowei, ZHAO Xiangmo, XU Zhigang, et al. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow[J]. Physica A, 2016, 461: 613-628. [23] PENG Guanghan, LU Weizhen, HE Hongdi, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40: 197-205. [24] LI Zhipeng, LI Wenzhong, XU Shangzhi, et al. Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system[J]. Nonlinear Dynamics, 2015, 80(1/2): 529-540. |
[1] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
[2] | KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1-15. |
[3] | MEI Chuncao, WEI Duqu*, LUO Xiaoshu. Stability Analysis of Inductive Load of Distributed Generation System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 50-55. |
[4] | LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63. |
[5] | XU Lun-hui, YOU Huang-yang. Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 1-5. |
[6] | YU Yan, BAI Ke-zhao, KONG Ling-jiang. Cellular Automaton Simulations of the Interactive Influence between Pedestrians and Vehicles [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 6-10. |
[7] | JIANG Xiao-feng, XU Lun-hui, ZHU Yue. Short-term Traffic Flow Prediction Based on SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 13-17. |
[8] | XU Lun-hui, NI Yan-ming, LUO Qiang, HUANG Yan-guo. Lane-changing Model Based on Minimum Safety Distance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 1-6. |
[9] | PAN Jiang-hong, BAI Ke-zhao, KUANG Hua, KONG Ling-jiang. Cellular Automaton Traffic Flow Model Considering Effect of Visibility [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 1-4. |
|