Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 63-67.doi: 10.16088/j.issn.1001-6600.2017.04.009
Previous Articles Next Articles
LI Yonggang1, QIN Lizhen1, CHEN Disan1, CHENG Minquan2,*
CLC Number:
[1] ISHAI Y,KUSHILEVITZ E,OSTROVSKY R,et al. Batch codes and their applications[C] // Proceedings of the thirty-sixth annual ACM symposium on theory of computing. New York: ACM Press, 2004:262-271. DOI:10.1145/1007352.1007396. [2] PATTERSON M B,STINSON D R,WEI R. Combinatorial batch codes[J] . Advances in Mathematics of Communications,2009,3(1):13-27. DOI:10.3934/amc.2009.3.13. [3] 贾冬冬,申月波,张更生. 组合批处理码的研究综述[J] . 数学进展,2015,44(6):801-808. DOI:10.11845/sxjz.2015003a. [4] BUJTS C, TUZA Z. Optimal combinatorial batch codes derived from dual systems[J] . Miskolc Mathematical Notes,2011,12(1):11-23. [5] 贾冬冬,张更生,袁兰党.一类最优组合批处理码[J] . 数学学报(中文版),2016,59(2):267-278. [6] BRUALDI R A,KIERNAN K P,MEYER S A,et al. Combinatorial batch codes and transversal matroids[J] . Advances in Mathematics of Communications,2010,4(3):419-431. DOI:10.3934/amc.2010.4.419. [7] 陈俊芳,张素梅,张更生.最优组合批处理码的单调性质及上下界[J] .中国科学:数学,2015,45(3):311-320. DOI:10.1360/N012014-00061. [8] 李勇刚,陈迪三,王金玉.基于p结构的一类组合批处理码[J] .数学进展,2017,46(3):331-341. DOI:10.11845/sxjz.2016040b. |
No related articles found! |
|