Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 34-46.doi: 10.16088/j.issn.1001-6600.2023100602

Previous Articles     Next Articles

Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace

ZHAI Yanhao1,2,3, WANG Yanwu1,4*, LI Qiang2,3, LI Jingkun1   

  1. 1. Environmental Science and Engineering College, Guilin University of Technology, Guilin Guangxi 541006, China;
    2. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin Guangxi 541004, China;
    3. Key Laboratory of Karst Dynamics(Institute of Karst Geology, Chinese Academy of Geological Sciences), Ministry of Natural Resources & Guangxi Zhuang Autonomous Region, Guilin Guangxi 541004, China;
    4. Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas (Guilin University of Technology), Guilin Guangxi 541006, China
  • Received:2023-10-06 Revised:2023-11-29 Published:2024-05-31

Abstract: Bibliometric methods were used to sort out the current status, hotspots and development trends of research on dissolved organic matter(DOM) in inland waters by three-dimensional fluorescence spectroscopy at home and abroad. Using CiteSpace knowledge graph analysis tool and CNKI and WoS core collection as data sources, the annual publication volume, authors and countries, keyword clustering and highlighting were visualized and analyzed, and the data analysis methods and analytical teehniques of DOM and 3D fluorescence spectroscopy in inland water were reviewed. The results show that the annual publication volume of this field is on the rise and is mainly characterized by the rapid growth of foreign language literature, China is the country with the largest publication volume, the degree of international exchange and cooperation is high and a stable research group has been formed, and the research potential is sufficient. Domestic and international research on dissolved organic matter in inland waters using three-dimensional fluorescence spectroscopy is mainly focused on waters susceptible to human activities or serious eutrophication, including dissolved organic matter in eutrophic waters and sediments, colored dissolved organic matter and disinfection by-products, as well as dissolved organic matter-heavy metal interactions, global climate change response, bioavailability, etc. In addition to conventional data analysis methods, the comprehensive use of three-dimensional fluorescence spectroscopy combined with absorption spectroscopy, mass spectrometry and other techniques to analyze the composition and source characteristics of dissolved organic matter in inland waters at the molecular level is an important research hot spot and trend in this field in the future.

Key words: dissolved organic matter, three-dimensional fluorescence spectra, lake and reservoir, river, inland water, CiteSpace

CLC Number:  X143;P342
[1] TRANVIK L J, DOWNING J A, COTNER J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6 part 2): 2298-2314. DOI: 10.4319/lo.2009.54.6_part_2.2298.
[2] HEINO J, ALAHUHTA J, BINI L M, et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services[J]. Biological Reviews, 2021, 96(1): 89-106. DOI: 10.1111/brv.12647.
[3] HAYASE K, TSUBOTA H. Sedimentary humic acid and fulvic acid as fluorescent organic materials[J]. Geochimica et Cosmochimica Acta, 1985, 49(1): 159-163. DOI: 10.1016/0016-7037(85)90200-5.
[4] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1256-1276. DOI: 10.1007/s00343-020-0102-x.
[5] PATIDAR S K, CHOKSHI K, GEORGE B, et al. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India[J]. Environmental Monitoring and Assessment, 2015, 187(1): 4118. DOI: 10.1007/s10661-014-4118-6.
[6] 陈诗雨,李燕,李爱民.溶解性有机物研究中三维荧光光谱分析的应用[J].环境科学与技术,2015,38(5):64-68,73. DOI: 10.3969/j.issn.1003-6504.2015.05.014.
[7] SANCHEZ N P, SKERIOTIS A T, MILLER C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme[J]. Environmental Science & Technology, 2014, 48(3): 1582-1591. DOI: 10.1021/es4049384.
[8] 赵珂艺,张宁宁,薛洁怡,等.重金属超富集植物研究CiteSpace可视化分析[J].广西师范大学学报(自然科学版),2023,41(3):191-209. DOI: 10.16088/j.issn.1001-6600.2022030701.
[9] 张小丽,陈泽柠,武正军.蜥蜴与气候变化的研究热点演变分析:基于Web of Science数据库[J].广西师范大学学报(自然科学版),2022,40(5):332-341. DOI: 10.16088/j.issn.1001-6600.2021100911.
[10] 董淑龙,马姜明,辛文杰.景观视觉评价研究进展与趋势:基于CiteSpace的知识图谱分析[J].广西师范大学学报(自然科学版),2023,41(5):1-13. DOI: 10.16088/j.issn.1001-6600.2022062102.
[11] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. DOI: 10.3969/j.issn.1003-2053.2015.02.009.
[12] 崔兵,高红杰,郑昭佩,等.基于三维荧光和二维相关光谱的城市河流溶解性有机质组成及其空间分异特征[J].生态与农村环境学报,2021,37(3):369-377. DOI: 10.19741/j.issn.1673-4831.2020.0568.
[13] 陈旭东,高良敏.不同面源强度影响下城市河流溶解性有机质光谱特征变化[J].环境科学,2022,43(6):3149-3159. DOI: 10.13227/j.hjkx.202106001.
[14] PARR T B, CRONAN C S, OHNO T, et al. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams[J]. Limnology and Oceanography, 2015, 60(3): 885-900. DOI: 10.1002/lno.10060.
[15] 陈伟江,廖月清,王苗苗,等.水体富营养化修复技术研究进展[J].应用化工,2022,51(2):531-537. DOI: 10.3969/j.issn.1671-3206.2022.02.044.
[16] 朱喜.太湖蓝藻大爆发的警示和启发[J].上海企业,2007(7):7-9, 13. DOI: 10.3969/j.issn.1004-7808.2007.07.004.
[17] 陈丽丽,肖启涛,俞晓琴,等.东部地区大型湖库有色可溶性有机物来源组成及潜在驱动因素[J].环境科学,2022,43(4):1930-1940. DOI: 10.13227/j.hjkx.202108267.
[18] 程庆霖,郑丙辉,王圣瑞,等.滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征[J].光谱学与光谱分析,2014,34(3):698-703. DOI: 10.3964/j.issn.1000-0593(2014)03-0698-06.
[19] 宋柯峥,蔡启佳,洪培,等.武汉南湖可溶解性有机物的来源与组成分析[J].环境科学与技术,2021,44(3):120-129. DOI: 10.19672/j.cnki.1003-6504.2021.03.016.
[20] 程云轩,赵可,张越,等.松花湖沉积物溶解性有机质荧光光谱特性[J].环境科学,2022,43(4):1941-1949. DOI: 10.13227/j.hjkx.202108136.
[21] 赵海超,李艳平,王圣瑞,等.洱海上覆水DOM荧光特征及对富营养化的指示意义[J].光谱学与光谱分析,2019,39(12):3888-3896. DOI: 10.3964/j.issn.1000-0593(2019)12-3888-09.
[22] ZHANG Y L, VAN DIJK M A, LIU M L, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence[J]. Water Research, 2009, 43(18): 4685-4697. DOI: 10.1016/j.watres.2009.07.024.
[23] 冯伟莹,朱元荣,吴丰昌,等.太湖水体溶解性有机质荧光特征及其来源解析[J].环境科学学报,2016,36(2):475-482. DOI: 10.13671/j.hjkxxb.2015.0652.
[24] JIANG T, BRAVO A G, SKYLLBERG U, et al. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China[J]. Water Research, 2018, 146: 146-158. DOI: 10.1016/j.watres.2018.08.054.
[25] LU W, CHEN N, FENG C P, et al. Treatment of polluted river sediment by electrochemical oxidation: changes of hydrophilicity and acute cytotoxicity of dissolved organic matter[J]. Chemosphere, 2020, 243: 125283. DOI: 10.1016/j.chemosphere.2019.125283.
[26] 朱金杰,邹楠,钟寰,等.富营养化巢湖沉积物溶解性有机质光谱时空分布特征及其环境意义[J].环境科学学报,2020,40(7):2528-2538. DOI: 10.13671/j.hjkxxb.2020.0051.
[27] LUO Y Y, ZHANG Y Y, LANG M F, et al. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 96. DOI: 10.1007/s11783-020-1340-z.
[28] WANG S R, JIAO L X, YANG S W, et al. Organic matter compositions and DOM release from the sediments of the shallow lakes in the middle and lower reaches of Yangtze River region, China[J]. Applied Geochemistry, 2011, 26(8): 1458-1463. DOI: 10.1016/j.apgeochem.2011.05.019.
[29] LE MOAL M, GASCUEL-ODOUX C, MÉNESGUEN A, et al. Eutrophication: a new wine in an old bottle?[J]. The Science of the Total Environment, 2019, 651(Pt 1): 1-11. DOI: 10.1016/j.scitotenv.2018.09.139.
[30] 孙文,王理明,刘吉宝,等.北运河沙河水库沉积物营养盐分布特征及其溯源分析[J].环境科学学报,2019,39(5):1581-1589. DOI: 10.13671/j.hjkxxb.2019.0067.
[31] 冯可心,李永峰,姜霞,等.丹江口水库表层沉积物有色可溶性有机物空间分布特征及其来源分析[J].环境化学,2016,35(2):373-382. DOI: 10.7524/j.issn.0254-6108.2016.02.2015090102.
[32] 王亚蕊,陈向超,陈丙法,等.藻屑堆积对沉积物-水界面污染物的释放效应[J].环境科学学报,2018,38(1):142-153. DOI: 10.13671/j.hjkxxb.2017.0279.
[33] LI Y P, WANG S R, ZHANG L, et al. Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China[J]. Journal of Soils and Sediments, 2014, 14(9): 1599-1611. DOI: 10.1007/s11368-014-0916-2.
[34] ZHANG Y L, YIN Y, FENG L Q, et al. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16): 5110-5122. DOI: 10.1016/j.watres.2011.07.014.
[35] WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems[J]. Limnology and Oceanography, 2010, 55(3): 1159-1171. DOI: 10.4319/lo.2010.55.3.1159.
[36] ZHANG Y L, ZHOU L, ZHOU Y Q, et al. Chromophoric dissolved organic matter in inland waters: present knowledge and future challenges[J]. Science of the Total Environment, 2021, 759: 143550. DOI: 10.1016/j.scitotenv.2020.143550.
[37] DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: assessment, perspectives and research priorities[J]. Water Research, 2019, 163: 114908. DOI: 10.1016/j.watres.2019.114908.
[38] AMADO A M, FARJALLA V F, ESTEVES F D A, et al. Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake[J]. FEMS Microbiology Ecology, 2006, 56(1): 8-17. DOI: 10.1111/j.1574-6941.2006.00028.x.
[39] 孙一鑫,王嘉旋,宋可心,等.浒苔释放有色溶解有机物的光降解研究[J].江苏海洋大学学报(自然科学版),2020,29(2):27-32. DOI: 10.3969/j.issn.2096-8248.2020.02.005.
[40] KRAMER G D, HERNDL G J. Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton[J]. Aquatic Microbial Ecology, 2004, 36(3): 239-246. DOI: 10.3354/ame036239.
[41] 陈慧敏,俞晓琴,朱俊羽,等.太湖有色可溶性有机物(CDOM)对COD及BOD5的指示意义[J].湖泊科学,2021,33(5):1376-1388. DOI: 10.18307/2021.0507.
[42] MIAN H R, HU G J, HEWAGE K, et al. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: a critical review[J]. Water Research, 2018, 147: 112-131. DOI: 10.1016/j.watres.2018.09.054.
[43] 蔡力童,李青松,马晓雁,等.基于EEMs和DOM分离的荧光特征及DBPsFP研究:以南方某市水源水为例[J].中国环境科学,2022,42(4):1745-1753. DOI: 10.3969/j.issn.1000-6923.2022.04.029.
[44] HUA B, VEUM K, YANG J, et al. Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters[J]. Environmental Monitoring and Assessment, 2010, 161(1/4): 71-81. DOI: 10.1007/s10661-008-0728-1.
[45] FANG C, YANG X, DING S K, et al. Characterization of dissolved organic matter and its derived disinfection byproduct formation along the Yangtze River[J]. Environmental Science & Technology, 2021, 55(18): 12326-12336. DOI: 10.1021/acs.est.1c02378.
[46] SHARMA N, MOHAPATRA S, PADHYE L P, et al. Role of precursors in the formation of trihalomethanes during chlorination of drinking water and wastewater effluents from a metropolitan region in western India[J]. Journal of Water Process Engineering, 2021, 40: 101928. DOI: 10.1016/j.jwpe.2021.101928.
[47] MARTINS E O, DRAKENBERG T. Cadmium(Ⅱ), zinc(Ⅱ), and copper(Ⅱ) ions binding to bovine serum albumin. A 113Cd NMR study[J]. Inorganica Chimica Acta, 1982, 67: 71-74. DOI: 10.1016/S0020-1693(00)85042-2.
[48] PLAZA C, BRUNETTI G, SENESI N, et al. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy[J]. Environmental Science & Technology, 2006, 40(3): 917-923. DOI: 10.1021/es051687w.
[49] XU H C, ZOU L, GUAN D X, et al. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins[J]. Science of the Total Environment, 2019, 665: 828-835. DOI: 10.1016/j.scitotenv.2019.02.186.
[50] ZHAO C, GAO S J, ZHOU L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing[J]. Environmental Science and Pollution Research International, 2019, 26(3): 2960-2973. DOI: 10.1007/s11356-018-3860-7.
[51] XU H C, GUAN D X, ZOU L, et al. Contrasting effects of photochemical and microbial degradation on Cu(Ⅱ) binding with fluorescent DOM from different origins[J]. Environmental Pollution, 2018, 239: 205-214. DOI: 10.1016/j.envpol.2018.03.108.
[52] 许明,刘伟京,白永刚,等.太湖蓝藻水华期可溶有机物的生物降解[J].中国环境科学,2018,38(9):3494-3501. DOI: 10.19674/j.cnki.issn1000-6923.2018.0378.
[53] ZHOU L, ZHOU Y Q, ZHANG Y L, et al. Hydrological controls on dissolved organic matter composition throughout the aquatic continuum of the watershed of Selin Co, the largest lake on the Tibetan Plateau[J]. Environmental Science & Technology, 2023, 57(11): 4668-4678. DOI: 10.1021/acs.est.2c08257.
[54] MARSCHNER B, BREDOW A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples[J]. Soil Biology and Biochemistry, 2002, 34(4): 459-466. DOI: 10.1016/S0038-0717(01)00203-6.
[55] TANG G, LI X L, WANG Z, et al. Dynamic relationship between dissolved organic matter and soluble microbial products during wastewater treatment[J]. Journal of Cleaner Production, 2021, 317: 128448. DOI: 10.1016/j.jclepro.2021.128448.
[56] YLLA I, ROMANÍ A M, SABATER S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature[J]. Microbial Ecology, 2012, 64(3): 593-604. DOI: 10.1007/s00248-012-0062-6.
[57] CORY R M, WARD C P, CRUMP B C, et al. Sunlight controls water column processing of carbon in Arctic fresh waters[J]. Science, 2014, 345(6199): 925-928. DOI: 10.1126/science.1253119.
[58] KOEHLER B, LANDELIUS T, WEYHENMEYER G A, et al. Sunlight-induced carbon dioxide emissions from inland waters[J]. Global Biogeochemical Cycles, 2014, 28(7): 696-711. DOI: 10.1002/2014GB004850.
[59] ALGESTEN G, SOBEK S, BERGSTRÖM A K, et al. Role of lakes for organic carbon cycling in the boreal zone[J]. Global Change Biology, 2004, 10(1): 141-147. DOI: 10.1111/j.1365-2486.2003.00721.x.
[60] HANSSON L A, NICOLLE A, GRANÉLI W, et al. Food-chain length alters community responses to global change in aquatic systems[J]. Nature Climate Change, 2013, 3(3): 228-233. DOI: 10.1038/nclimate1689.
[61] CARSTEA E M, BAKER A, PAVELESCU G, et al. Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK[J]. Hydrological Processes, 2009, 23(13): 1937-1946. DOI: 10.1002/hyp.7335.
[62] FENG L, AN Y Q, XU J Z, et al. Biochemical evolution of dissolved organic matter during snow metamorphism across the ablation season for a glacier on the central Tibetan Plateau[J]. Scientific Reports, 2020, 10(1): 6123. DOI: 10.1038/s41598-020-62851-w.
[63] 郝亚蒙.基于遥感的三江源湖泊面积变化及影响因子分析[D].北京:中国地质大学,2018.
[64] ZHOU Y Q, ZHOU L, ZHANG Y L, et al. Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes[J]. Water Research, 2019, 166: 115048. DOI: 10.1016/j.watres.2019.115048.
[65] AN S L, MAO Z D, CHEN M L, et al. Sunlight irradiation promotes both the chemodiversity of terrestrial DOM and the biodiversity of bacterial community in a subalpine lake[J]. Environmental Research, 2023, 227: 115823. DOI: 10.1016/j.envres.2023.115823.
[66] 章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8. DOI: 10.11932/karst20150101.
[67] YAMASHITA Y, JAFFÉ R, MAIE N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology and Oceanography, 2008, 53(5): 1900-1908. DOI: 10.4319/lo.2008.53.5.1900.
[68] 任浩宇,姚昕,马飞扬.微生物降解影响下湖泊草源DOM与重金属的相互作用[J].中国环境科学,2020,40(11): 4989-4997. DOI: 10.19674/j.cnki.issn1000-6923.2020.0552.
[69] 苑浩达,刘睿,倪茂飞,等.典型喀斯特河流溶解性有机质生物降解特性及其温度敏感性研究[J].环境科学学报,2022,42(3):218-226. DOI: 10.13671/j.hjkxxb.2021.0333.
[70] 叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4): 779-788. DOI: 10.5846/stxb201209241349.
[71] LØNBORG C, ÁLVAREZ-SALGADO X A, DAVIDSON K, et al. Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo[J]. Marine Chemistry, 2010, 119(1/2/3/4): 121-129. DOI: 10.1016/j.marchem.2010.02.001.
[72] XU H C, GUO L D. Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly[J]. Water Research, 2018, 135: 187-194. DOI: 10.1016/j.watres.2018.02.016.
[73] CHEN Q, LØNBORG C, CHEN F, et al. Increased microbial and substrate complexity result in higher molecular diversity of the dissolved organic matter pool[J]. Limnology and Oceanography, 2022, 67(11): 2360-2373. DOI: 10.1002/lno.12206.
[74] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. DOI: 10.1016/0304-4203(95)00062-3.
[75] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. DOI: 10.1021/es034354c.
[76] YU H B, SONG Y H, DU E D, et al. Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers[J]. Environmental Science and Pollution Research International, 2016, 23(11): 10644-10655. DOI: 10.1007/s11356-016-6232-1.
[77] PITTA E, ZERI C, TZORTZIOU M, et al. Seasonal variations in dissolved organic matter composition using absorbance and fluorescence spectroscopy in the Dardanelles Straits-North Aegean Sea mixing zone[J]. Continental Shelf Research, 2017, 149: 82-95. DOI: 10.1016/j.csr.2016.07.013.
[78] 王晓江,黄廷林,李楠,等.峡谷分层型水源水库表层沉积物溶解性有机物光谱特征[J].湖泊科学,2018,30(6): 1625-1635. DOI: 10.18307/2018.0614.
[79] 周石磊,陈召莹,张甜娜,等.白洋淀典型淀区沉积物间隙水溶解性有机物的光谱时空演变特征[J].环境科学,2021,42(8):3730-3742. DOI: 10.13227/j.hjkx.202011063.
[80] 黄廷林,方开凯,张春华,等.利用UV-vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性[J].环境科学,2016,37(12):4577-4585. DOI: 10.13227/j.hjkx.201606016.
[81] NI M F, LI S Y. Dynamics and internal links of dissolved carbon in a karst river system: implications for composition, origin and fate[J]. Water Research, 2022, 226: 119289. DOI: 10.1016/j.watres.2022.119289.
[82] SMITH D F, PODGORSKI D C, RODGERS R P, et al. 21 Tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures[J]. Analytical Chemistry, 2018, 90(3): 2041-2047. DOI: 10.1021/acs.analchem.7b04159.
[83] CHEN Q, CHEN F, GONSIOR M, et al. Correspondence between DOM molecules and microbial community in a subtropical coastal estuary on a spatiotemporal scale[J]. Environment International, 2021, 154: 106558. DOI: 10.1016/j.envint.2021.106558.
[84] XU L, HU Q, JIAN M F, et al. Exploring the optical properties and molecular characteristics of dissolved organic matter in a large river-connected lake (Poyang Lake, China) using optical spectroscopy and FT-ICR MS analysis[J]. Science of the Total Environment, 2023, 879: 162999. DOI: 10.1016/j.scitotenv.2023.162999.
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1-13.
[2] ZHAO Keyi, ZHANG Ningning, XUE Jieyi, LI Guangluan, LI Yi, YU Fangming, LIU Kehui. CiteSpace Visualization Analysis of Heavy Metal Hyperaccumulators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 191-209.
[3] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[4] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34.
[5] MAO Zhengli, ZHAO Huamei. Study on Geochemical Baseline and Pollution Assessment of Heavy Metals Cd and Pb in Soil of Western South China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 170-181.
[6] GUAN Xiaojin, ZHAO Keyi, LIU Shiling, LI Yi, YU Fangming, LI Chunming, LIU Kehui. Global Trends and Hot Topics in the Field of Manganese Phytoremediation over the Past Three Decades: A Review Based on Citespace Visualization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 44-57.
[7] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[8] HUANG Song, WANG Mengfei, LI Yanlin. Flow Space Features of Tourism Information Flow Based on Online Platforms:A Case Study of Core Cities in the Pearl River-West River Economic Belt [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 162-173.
[9] YOU Jing, QI Yueming, SHAO Guangyu, MA Chao, YANG Yaqi, PEI Yifeng. Hydrochemical Characteristics and Main Ion Sourcesof Shallow Groundwater in Zihe River Source Region, Shandong, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 132-139.
[10] BAO Jianfei, ZHANG Dujuan. Evolution Analysis of Harmonious Development of Tourism Industry and Regional Economy: a Case Study of Urban Agglomeration in Yangtze River Delta [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 117-127.
[11] HAN Huiqing, CAI Guangpeng, YIN Changying, MA Geng, ZHANG Yingjia, LU Yi. Analysis of Landscape Stability in Middle and Upper Reaches of the Wujiang River in 2000 and 2015 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 197-204.
[12] ZHANG Haoran. Benthic Diatom Assemblages Distribution in Longjiang and Diaojiang Rivers, in Relation to Chemical and Physiographical Factor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 132-141.
[13] WEN Hui-ying, LIU Dan, HUANG Jiao. Speed Limit Model of Mountain Freeway during the Night Based on Driver’s Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 6-13.
[14] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115-119.
[15] SHI Rui-dan, WU Zhi-qiang, HUANG Liang-liang, FENG Wen-li, ZHU Zhao-jun, DING Yang, HU Yi-xiang. Fish Species Diversity of the Upper Xiangjiang River in North Guangxi Province [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 127-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!