Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (1): 53-57.doi: 10.16088/j.issn.1001-6600.2017.01.009
Previous Articles Next Articles
HAN Caihong, LI Lüe, HUANG Lili
CLC Number:
[1] 刘双, 李海龙. 用差分方程模型模拟北京2003年SARS疫情[J]. 生物数学学报, 2006, 21(1):21-27. DOI:10.3969/j.issn.1001-9626.2006.01.004. [2] 周林华, 胡宏华, 梁辰,等. 差分方程模型在交通流计算中的应用研究[J]. 长春理工大学学报(自然科学版), 2014,37(2):117-123.DOI:10.3969/j.issn.1672-9870.2014.02.028. [3] HUANG Chunmiao, WANG Weiping. Applications of difference equation in population forecasting model[J]. Advanced Materials Research, 2014, 1079/1080:664-667. DOI:10.4028/www.scientific.net/AMR.1079-1080.664. [4] 韩彩虹,李略,庞琳娜,等. 极大型差分方程xn=max{1/xαn-k,An/xβn-k-2}的全局吸引性[J]. 广西师范大学学报(自然科学版), 2015, 33(3):71-74. DOI:10.16088/j.issn.1001-6600.2015.03.011. [5] GELIKEN A, CINAR C. On the global attractivity of a max-type difference equation[J]. Discrete Dynamics in Nature and Society, 2009, 2009:812674. DOI:10.1155/2009/812674. [6] FAN Yonghong, WANG Linlin, LI Wantong. Global behavior of a higher order nonlinear diference equation [J]. Journal of Mathematital Analysis and Applications,2004,299(1):113-126. DOI:10.1016/j.jmaa.2004.06.014. [7] HU Linxia, HE Wansheng, XIA Hongming. Global asymptotic behavior of a rational difference equation[J]. Applied Mathematics and Computation, 2012, 218(15):7818-7828. DOI:10.1016/j.amc.2012.01.054. [8] RAOUF A. Global behavior of the higher order rational Riccati difference equation[J]. Applied Mathematics and Computation, 2014, 230(2):1-8. DOI:10.1016/j.amc.2013.12.055. [9] ELABBASY E M, EL-METWALLY H A, ELSAYED E M. Global behavior of the solutions of some difference equations[J]. Advances in Difference Equations, 2011, 2011(1):28. DOI:10.1186/1687-1847-2011-28. |
[1] | HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin. Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 71-74. |
|