Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (1): 53-57.doi: 10.16088/j.issn.1001-6600.2017.01.009

Previous Articles     Next Articles

Global Asymptotic Stability of a Class of Difference Equations

HAN Caihong, LI Lüe, HUANG Lili   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-01-20 Published:2018-07-17

Abstract: In this paper, the global characteristics of the following difference equations are investigated:$x_{\text{n+1}}=\frac{{\sum^t_{i=1}} a_i x_{n-m_i}}{q+{\sum^t_{i=1}} c_i x_{n-m_i}+{\sum^t_{k=1}} b_k x_{n-n_k}}$.Let $A=\sum^t_{i=1} a_i$,$B=\sum^s_{k=1} b_k$,$B=\sum^s_{k=1} c_i$and $l=\max\left \{m_t,n_s\right \}$, where ai>0 ,ci>0 for all 1≤i≤t, bk>0 for all 1≤k≤s,q12<…t, 0≤n12<…s and {m1,m2,…,mt}∩{n1,n2,…,ns}=?, and the initial values are positive. By constructing a suitable system of equations and binary functions, it is proved that the unique equilibrium solution of the equation is locally stable and a global attractor. In other words, the solution is globally asymptotically stable.

Key words: difference equations, positive solution, global asymptotically stable

CLC Number: 

  • O175
[1] 刘双, 李海龙. 用差分方程模型模拟北京2003年SARS疫情[J]. 生物数学学报, 2006, 21(1):21-27. DOI:10.3969/j.issn.1001-9626.2006.01.004.
[2] 周林华, 胡宏华, 梁辰,等. 差分方程模型在交通流计算中的应用研究[J]. 长春理工大学学报(自然科学版), 2014,37(2):117-123.DOI:10.3969/j.issn.1672-9870.2014.02.028.
[3] HUANG Chunmiao, WANG Weiping. Applications of difference equation in population forecasting model[J]. Advanced Materials Research, 2014, 1079/1080:664-667. DOI:10.4028/www.scientific.net/AMR.1079-1080.664.
[4] 韩彩虹,李略,庞琳娜,等. 极大型差分方程xn=max{1/xαn-k,An/xβn-k-2}的全局吸引性[J]. 广西师范大学学报(自然科学版), 2015, 33(3):71-74. DOI:10.16088/j.issn.1001-6600.2015.03.011.
[5] GELIKEN A, CINAR C. On the global attractivity of a max-type difference equation[J]. Discrete Dynamics in Nature and Society, 2009, 2009:812674. DOI:10.1155/2009/812674.
[6] FAN Yonghong, WANG Linlin, LI Wantong. Global behavior of a higher order nonlinear diference equation [J]. Journal of Mathematital Analysis and Applications,2004,299(1):113-126. DOI:10.1016/j.jmaa.2004.06.014.
[7] HU Linxia, HE Wansheng, XIA Hongming. Global asymptotic behavior of a rational difference equation[J]. Applied Mathematics and Computation, 2012, 218(15):7818-7828. DOI:10.1016/j.amc.2012.01.054.
[8] RAOUF A. Global behavior of the higher order rational Riccati difference equation[J]. Applied Mathematics and Computation, 2014, 230(2):1-8. DOI:10.1016/j.amc.2013.12.055.
[9] ELABBASY E M, EL-METWALLY H A, ELSAYED E M. Global behavior of the solutions of some difference equations[J]. Advances in Difference Equations, 2011, 2011(1):28. DOI:10.1186/1687-1847-2011-28.
[1] HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin. Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!