Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (1): 28-36.doi: 10.16088/j.issn.1001-6600.2017.01.005

Previous Articles     Next Articles

Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm

PENG Xinjian, WENG Xiaoxiong   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510640, China
  • Online:2017-01-20 Published:2018-07-17

Abstract: By analyzing the driving characteristics of public transport vehicles and driving environment,the following key factors that affects bus travel time are determined: the weather,the time period (the peak / flat peak), traffic flow and the length of the road.Combined with nonlinear BP neural network’s advantages such as mapping ability, self-learning and adaptive ability and generalization ability and firefly algorithm’s advantages such as less parameters,simple operation and good stability,a BP neural network optimization method is put forward that is optimized by the firefly algorithm to reduce the training time of neural network and can improve the stability of prediction. Then, GPS datas and sampling datas are used to build a model to realize the accurate prediction of travel time of transit vehicles.MATLAB software is used for simulations.The optimized algorithm,the classical BP neural network algorithm and Kalman algorithm are compared in the simulations which show that the optimized prediction model has higher accuracy and is more stable for bus travel time prediction.

Key words: intelligent transportation system, public traffic, firefly algorithm, BP neural network, Kalman algorithm, travel time prediction

CLC Number: 

  • U491
[1] 周雪梅,杨晓光,王磊.公交车辆行程时间预测方法研究[J].交通与计算机,2002,20(6):12-14.DOI:10.3963/j.issn.1674-4861.2002.06.004.
[2] 周文霞,徐建闽,刘正东.基于卡尔曼滤波算法的公交车辆行程时间预测[J].交通标准化,2007(2/3):174-177. DOI:10.3869/j.issn.1002-4786.2007.02.015.
[3] 朱丽颖.公交车辆行程时间预测方法研究[D]. 北京:北京交通大学,2010.
[4] JEONG R H. The prediction of bus arrival time using automatic vehicle Location systems data[D]. College Station, TX: Texas A&M University,2004.
[5] CHIEN S,DING Y,WEI C. Dynamic bus arrival time prediction with artificial neural networks[J].Journal of Transportation Engineering,2002,128(5):429-438.DOI:10.1061/(ASCE)0733-947X(2002)128:5(429).
[6] 彭伟,汪镭.基于萤火虫算法的神经网络CPI预测模型[J].微型电脑应用,2012,28(3):46-48, 55. DOI:10.3969/j.issn.1007-757x.2012.03.014.
[7] 翁胜龙,单外平,何国林.基于萤火虫BP神经网络的轴承故障诊断研究[J].电子设计工程,2014,22(24):4-7. DOI:10.14022/j.cnki.dzsjgc.2014.24.002.
[8] 杨先平.城市道路行程时间预测方法研究[D]. 长春:吉林大学,2005.
[9] 韩印,杨兆升,胡坚明.公共交通智能化调度基础数据预测方法研究[J].公路交通科技,2003,20(3):140-143. DOI:10.3969/j.issn.1002-0268.2003.03.035.
[10] 孙喜梅,杨兆升.城市公共交通站点间实时动态行程时间预测的模型[J].吉林大学学报(工学版),2002,32(1):47-51.DOI:10.3969/j.issn.1671-5497.2002.01.010.
[11] 李大利.一种时间序列预测方法的应用研究[D]. 长春:吉林大学,2008.
[12] 吕兰涛.神经网络的城市交通信息预测模型研究[D]. 江门:五邑大学,2003.
[1] LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120.
[2] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[3] ZHONG Haixin, QIU Senhui, LUO Xiaoshu, TANG Tang, YANG Li, ZHAO Shuai. Study of Applying BP Neural Network with Inertia Term Self-tuningto Attitude Stability of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 24-31.
[4] KUANG Xianyan, ZHU Lei, WU Yun, XU Chen. Bus Video Detection Based on Adaboost Algorithm and Color Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 9-18.
[5] CHEN Jin, LUO Xiao-shu. Extraction and Recognition of Cell Image Feature Basedon Wavelet Transform and Invasive Weed Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 22-28.
[6] HUANG Jing, LUO Xiao-shu. Application of BP Neural Network in Ice Accretion over Transmission Line [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!