Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (1): 53-60.doi: 10.16088/j.issn.1001-6600.2018.01.007

Previous Articles     Next Articles

Iterative Learning Control of Dam-River Channel Irrigation Systems

DAI Xisheng1,2*,LI Guang 1,3 ,ZHOU Xingyu1   

  1. 1. School of Electrical and Information Engineering,Guangxi University of Science and Technology,Liuzhou Guangxi 545006,China;
    2. Colleges and Universities Key Laboratory of Intelligent Integrated Automation, Guilin University of Electronic Technology,Guilin Guangxi 541004,China;
    3. School of Intelligent Manufacturing, Guangdong College of Business and Technology,Zhaoqing Guangdong 526020,China
  • Received:2017-05-30 Online:2018-01-20 Published:2018-07-17

Abstract: The iterative learning control problem of dam-river channel irrigation system is investigated in this paper. Firstly,the Hayami equation of the linearized equation is discretized in space,and the state space mathematical model of the relationship between gate and flow is established by superposition vector method. Secondly,based on the repetitive characteristics of irrigation process,a D-type iterative learning control algorithm is designed,and the convergence condition of the algorithm is also proposed. The results show that the iterative learning control of opening degree of the gate can make the actual output of the system completely track the expected flow rate in the channel. Finally,the validity of the proposed iterative learning control is illustrated by numerical simulation.

Key words: iterative learning control, irrigation system, Hayami equation, discretization

CLC Number: 

  • TP273
[1] CUNGE J A. Unsteady flow in open channels[M]. Fort Collins, CO: Water Resources Publications,1975:705-761.
[2] 闫旖君,徐建新,陆建红.人民胜利渠灌区多水源循环转化模型研究[J].灌溉排水学报,2017,36(2):52-57. DOI:10.13522/j.cnki.ggps.2017.02.008.
[3] 匡迎春,沈岳,段建南,等. 模糊控制在水稻节水自动灌溉中的应用[J].农业工程学报,2011,27(4):18-21. DOI:10.3969/j.issn.1002-6819.2011.04.004.
[4] 王健,谢南. 基于变论域模糊控制的大豆种植灌溉控制算法[J]. 中国农村水利水电,2017(3):35-40.
[5] 徐宝山,任晓文,闫晓婷. 基于TCC控制模式节水自动化灌溉体系应用[J]. 节水灌溉,2017(2):115-117. DOI:10.3969/j.issn.1007-4929.2017.02.027.
[6] LITRICO X,FROMION V. Modeling and control of hydrosystems[M].London: Springer,2009:17-38.
[7] SEEL T,WERNER C,RAISCHA J,et al.Iterative learning control of a drop foot neuroprosthesis-generating physiological foot motion in paretic gait by automatic feedback control[J]. Control Engineering Practice,2016,48:87-97. DOI:10.1016/j.conengprac.2015.11.007.
[8] LIU Tao,WANG X Z,CHEN Junghui.Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties[J]. Journal of Process Control,2014,24(12): 95-106. DOI:10.1016/j.jprocont.2014.07.002.
[9] RABANI A,MADARIAGA J,BOUVIER C,et al.An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling[J].Journal of Manufacturing Processes,2016,22: 99-107. DOI:10.1016/j.jmapro.2016.01.014.
[10] LITRICO X,GEORGES D.Robust continuous-time and discrete-time flow control of a dam-river system:(I)Modelling[J]. Applied Mathematical Modelling,1999,23(11):809-827.DOI: 10.1016/S0307-904X(99)00014-1.
[11] 陆金甫,关治.偏微分方程数值解法[M].2版.北京:清华大学出版社,2004.
[12] 阮新建,杨芳,王长德.渠道运行控制数学模型及系统特性分析[J].灌溉排水,2002,21(1):36-40.DOI:10.13522/j.cnki.ggps.2002.01.010.
[13] 孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999.
[14] SUN Mingxuan,GE S S,MAREELS I M Y.Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning[J]. IEEE Transactions on Robotics,2006,22(3): 563-568. DOI:10.1109/TRO.2006.870650.
[15] 严求真,孙明轩,李鹤.任意初值非线性不确定系统的迭代学习控制[J].自动化学报,2016,42(4): 545-555. DOI:10.16383/j.aas.2016.c150480.
[16] 阮新建.渠道自动运行现代控制理论模型研究[D].武汉:武汉大学,2002.
[1] E Xu, SHAO Liang-shan, LI Sheng, WANG Quan-tie. Discretization Algorithm for Interval Numbers by Associated Degree [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!