Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 170-181.doi: 10.16088/j.issn.1001-6600.2021032203

Previous Articles     Next Articles

Study on Geochemical Baseline and Pollution Assessment of Heavy Metals Cd and Pb in Soil of Western South China

MAO Zhengli1,2*, ZHAO Huamei2   

  1. 1. School of Civil Engineering and Architecture, Baise University, Guangxi Baise 533000, China;
    2. Guangxi Colleges and Universities Key Laboratory of Regional Environments Analysis and Pollution Control of West Guangxi (Baise University), Guangxi Baise 533000, China;
    3. Library of Baise University, Guangxi Baise 533000, China
  • Received:2021-03-22 Revised:2021-05-15 Published:2022-05-31

Abstract: In Youjiang River basin, 71 shallow soil samples were collected according to the network density of 10 km×3 km, and the contents of Cd and Pb were analyzed and tested. Cumulative frequency method and fractal analysis method were used to analyze and calculate their environmental geochemical baseline values, so as to assess the Cd and Pb pollution of shallow soil in this area. The results showed that, there was not much difference between the environmental geochemical baseline obtained by the two methods, among which Cd had a difference of 10.3% in upper limit of baseline, 9.4% in baseline value, Pb had a difference of 3.6% in upper limit of baseline, 6.7% in baseline value, indicating that the calculation results of the two methods were reasonable. In this study, the arithmetic average of the two methods was taken as the environmental geochemical baseline values, that was, Pb was 25.44 mg/kg, and Cd was 0.304 mg/kg. The single factor pollution assessment results of Cd showed that the light pollution, intermediate pollution and heavy pollution accounted for 67.61%, 23.94% and 5.63%, respectively, while the single factor pollution assessment of Pb showed that the light pollution, intermediate pollution and heavy pollution accounted for 53.52%, 25.35% and 11.27%, respectively. Nemerow comprehensive pollution assessment showed that light pollution, intermediate polltuion and heavy pollution accounted for 52.11%, 33.88% and 8.45%, respectively. This showed that the pollution in this area was dominated by light pollution, followed by moderate pollution, only a small number of samples were severely polluted. Moderate and severe pollution areas were mainly distributed in the southeast and northwest of the study area, and there was a moderate pollution point in the central and western regions. The geoaccumulation index of Cd and Pb of most samples was less than 1, indicating that the accumulation effect of Cd and Pb in this area was not obvious. However, the geoaccumulation index of Cd and Pb in the southeastern part of the study area and the north-central part of the study area reached the level of moderate pollution. All these indicated that the development of bauxite resources in the east area and the production activities of the thermal power plant in the middle area had a great impact on the pollution of Cd and Pb in the area.

Key words: environmental geochemical baseline, fractal analysis, pollution assessment, Cd, Pb, Youjiang River basin

CLC Number: 

  • X53
[1] JIANG Y F, SHI L P, GUANG A L, et al. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China[J]. Environmental Geochemistry and Health, 2018, 40(5): 2007-2020.
[2] 陈春强, 邓华, 陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学报), 2017, 35(4): 127-135.
[3] CHEN H Y, TENG Y G, LU S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153.
[4] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700.
[5] 宋志廷, 赵玉杰, 周其文, 等. 基于地质统计及随机模拟技术的天津武清区土壤重金属源解析[J]. 环境科学, 2016, 37(7): 2756-2762.
[6] 刘胜然, 王铁宇, 汤洁, 等. 典型城市单元的土壤重金属溯源方法与实证研究[J]. 生态学报, 2019, 39(4): 1278-1289.
[7] MAO Z L, ZHAO H M, QIN Z P. Assessment of Cd-Pb pollution in soils of the Youjiang River basin, South China[J]. Eurasian Soil Science, 2020, 53(6): 829-837.
[8] 毛政利, 覃卓萍, 黄尚明. 右江河谷地区土壤重金属 Cd、Pb 含量的空间分布特征[J]. 土壤通报, 2020, 51(3): 709-716.
[9] 赵辛金, 吴天生, 钟晓宇, 等. 广西典型岩溶区重金属高背景区农田土壤生态风险综合评价[J]. 江苏农业科学, 2020, 48(22): 252-261.
[10] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J]. 环境科学, 2018, 39(9): 4317-4326.
[11] CHEN S B, WANG M, LI S S, et al. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 765-774.
[12] 彭丽梅, 赵理, 周悟, 等. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[13] 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716.
[14] LI Y Y, QU X D, ZHANG M, et al. Anthropogenic impact and ecological risk assessment of hallium and cobalt in Poyang Lake using the geochemical baseline[J]. Water, 2018, 10(11): 1703-1716.
[15] 李雨静, 李社宏, 廖红为, 等. 云南省蒙自东山岩溶区土壤重金属污染评价[J]. 桂林理工大学学报, 2019, 39(3): 700-705.
[16] ZHOU Y, GAO L, XU D Y, et al. Geochemical baseline establishment, environmental impact and health risk assessment of vanadium in lake sediments, China[J]. Science of the Total Environment, 2019, 660: 1338-1345.
[17] 高杨, 许东升, 李琦. 宿州市表层土壤重金属元素环境地球化学基线研究[J]. 地球与环境, 2018, 46(5): 444-450.
[18] TURNER O, HOLLIS S, GÜVEN J, et al. Establishing a geochemical baseline for the lower carboniferous stratigraphy of the Rathdowney trend, Irish Zn-Pb orefield[J]. Journal of Geochemical Exploration, 2019, 196(1): 259-269.
[19] 丁海霞. 金昌市郊农田土壤重金属的地球化学基线值研究[J]. 环境研究与监测, 2018, 31(2): 1-5.
[20] 贾晗, 刘军省, 王春光, 等. 基于铜陵地区地球化学基线的土壤重金属污染评价及分析[J]. 环境工程, 2019, 37(5): 50-55.
[21] 汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报, 2007, 23(2): 81-88.
[22] COVELLI S, FONTOLAN G. Application of a normalization procedure in determining regional geochemical baselines[J]. Environmental Geology, 1997, 30(1/2): 34-45.
[23] SALMINEN R, GREGORAUSKIEN V. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology[J]. Applied Geochemistry, 2000, 15(5): 647-653.
[24] DONOGHUE J F, RAGLAND P C, CHEN Z Q, et al. Standardization of metal concentrations in sediments using regression residuals: an example from a large lake in Florida, USA[J]. Environmental Geology, 1998, 36(1/2): 65-76.
[25] ISLAM M S, HOSSAIN M B, MATIN A, et al. Assessment of heavy metal pollution distribution and source apportionment in the sediment from Feni River estuary, Bangladesh[J]. Chemosphere, 2018, 202: 25-32.
[26] ZHANG H, YU M, XU H J. et al. Geochemical baseline determination and contamination of heavy metals in the urban topsoil of Fuxin City, China[J]. Journal of Arid Land, 2020, 12(6): 1001-1017.
[27] 孙厚云, 卫晓锋, 甘凤伟, 等. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征[J]. 环境科学, 2019, 40(8): 3753-3763.
[28] ZONG Y T, XIAO Q, LU S G. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (Northeastern China)[J]. Environmental Science and Pollution Research International, 2016, 23(14): 14600-14607.
[29] 武梦娟, 牛洁, 张虎才, 等. 云南抚仙湖沉积物粒度分维特征及环境意义[J]. 云南大学学报(自然科学版), 2019, 41(4): 738-745.
[30] 代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818.
[31] 姚凌阳, 谢淑云, 张陇和, 等. 欧洲土壤重金属元素多重分形特征及其环境意义[J]. 安徽农业科学, 2016, 44(24): 138-146.
[32] 郗伟华, 刘任涛, 赵娟, 等. 干旱风沙区路域柠条灌丛林地土壤重金属分布及其与土壤分形维数的关系[J]. 水土保持研究, 2018, 25(6): 196-202.
[33] 宋书巧, 胡伟. 基于ArcGIS与分形理论确定土壤重金属异常下限值: 以喀斯特小流域Cd为例[J]. 湖北农业科学, 2015, 54(6), 1361-1364.
[34] MATSCHULLAT J, OTTENSTEIN R, REIMANN C. Geochemical background:can we calculate it?[J]. Environmental Geology, 2000, 39(9): 990-1000.
[35] THONGYUAN S, KHANTAMOON T, AENDO P, et al. Ecological and health risk assessment, carcinogenic and non-carcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand[J]. Human and Ecological Risk Assessment: An International Journal, 2021, 27(4): 876-897.
[36] 李方舟, 章臻, 张昭天, 等. 厦门岛内不同功能区土壤与灰尘重金属污染的特征及评估[J]. 安全与环境学报, 2017, 17(2): 719-724.
[37] VERMA F, SINGH S, SINGH J, et al. Assessment of heavy metal contamination and its effect on earthworms in different types of soils[J]. International Journal of Environmental Science and Technology, 2021: 03297. DOI: 10.1007/s13762-021-03297-z.
[38] 杨安, 王艺涵, 胡健, 等. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 2020, 41(2): 886-894.
[39] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
[40] 吴冠美, 覃雪梅, 刘云霞, 等. 广西靖西县田七种植区土壤重金属的调查与分析[J]. 环境保护科学, 2017, 43(1): 123-128.
[41] 李樋, 李随民, 王轶, 等. 内蒙古东来地区土壤重金属元素地球化学基线值研究[J]. 河北地质大学学报, 2020, 43(2): 23-8, 46.
[42] 孙厚云, 卫晓锋, 贾凤超, 等. 承德伊逊河钒钛磁铁矿小流域土壤重金属地球化学基线及生态风险累积效应[J]. 地质学报, 2021, 95(2): 588-604.
[43] 朱晓东, 韦朝阳, 杨芬. 包头-白云鄂博地区重金属基线值的厘定及其在重金属污染分级评价中的应用[J]. 自然资源学报, 2016, 31(2): 310-320.
[1] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31-39.
[2] ZHOU Jun, CHEN Shuman, XING Bing, CHEN Yajing, LI Yinling, HE Liu, ZHOU Zuping, PU Shiming. Antitumor Effect of Normal Mice Derived CD4+CD25+ Cells in Mice Lung Cancer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 191-199.
[3] YAN Haibo, DENG Gang, JIANG Yunlu. Robust Estimation of Multivariate Linear Regression Model Based on MRCD Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 175-186.
[4] LIANG Jiayi, WANG Yongsen, DUAN Ming, LI Yi, CHEN Zhe, YU Fangming, LIU Kehui. Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants:A Meta Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 1-12.
[5] LAN Yuwei, YI Qilei, HUANG Yantao, LIU Jinling, TAN Yanfang. Microwave-assisted Synthesis of CdTe Quantum Dotsand Application on Dye-sensitized Solar Cell [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 104-110.
[6] ZHANG Xiurong , LI Chuanqi , LU Ye , ZHANG Dongchuang , KONG Yibu , FU Xueqian , FAN Qingbin. A Novel Two-dimensional Code Design and Performance Analysisfor SAC-OCDMA System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 28-34.
[7] TANG Yu-ting, HUANG Jia-yu, WANG Wei-sheng, ZHANG Chao-lan. Effect of Low Molecular Weight Organic Acids on Cd and Zn Absorption of Rape [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 127-131.
[8] SHI Gui-yu, YI Li-na, LIANG Chao-hong, LI Ming-xia. Effects of Se on Some Physiological-Biochemical CharacteristicsofSiraitia grosvenorii Seedling Under Cd2+ Stress [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 60-64.
[9] XIONG Fei-bing, YANG Feng. Fluorescence Decay Dynamics of Praseodymium Ions Doped in Lead Tungstate Crystal [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 71-75.
[10] ZHAO Fa-lan, BING Shi-yu, CHEN Dun-xue, NONG Xiao-xian, LIU Xi-liang. cDNA Cloning and Sequence Analysis of the Myosin Light Chain 1 Gene in Siniperca scherzeri [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .