Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 100-107.doi: 10.16088/j.issn.1001-6600.2021060919
Previous Articles Next Articles
XU Ping, ZHONG Simin, LI Binbin, XIONG Wenjun*
CLC Number:
[1] FAN J Q, LV J C. Sure independence screening for ultrahigh dimensional feature space[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(5): 849-911. [2]HALL P, MILLER H. Using generalized correlation to effect variable selection in very high dimensional problems[J]. Journal of Computational and Graphical Statistics, 2009, 18(3): 533-550. [3]LI G R, PENG H, ZHANG J, et al. Robust rank correlation based screening[J]. The Annals of Statistics, 2012, 40(3): 1846-1877. [4]BARUT E, FAN J Q, VERHASSELT A. Conditional sure independence screening[J]. Journal of the American Statistical Association, 2016, 111(515): 1266-1277. [5]马学俊. GSIS超高维变量选择[J]. 统计与信息论坛, 2015, 30(8): 16-19. [6]FAN J Q, SONG R. Sure independence screening in generalized linear models with NP dimensionality[J]. The Annals of Statistics, 2010, 38(6): 3567-3604. [7]XU C, CHEN J H. The sparse MLE for ultra-high-dimensional feature screening[J]. Journal of the American Statistical Association, 2014, 109(507): 1257-1269. [8]FAN J Q, FENG Y, SONG R. Nonparametric independence screening in sparse ultra-high-dimensional additive models[J]. Journal of the American Statistical Association, 2011, 106(494): 544-557. [9]FAN J Q, MA Y B, DAI W. Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models[J]. Journal of the American Statistical Association, 2014, 109(507): 1270-1284. [10]LIU J Y, LI R Z,WU R L. Feature selection for varying coefficient models with ultra high dimensional covariates[J]. Journal of the American Statistical Association, 2014, 109(505):266-274. [11]LI R Z, ZHONG W, ZHU L P. Feature screening via distance correlation learning[J]. Journal of the American Statistical Association, 2012, 107(499): 1129-1139. [12]STONE C J. Additive regression and other nonparametric models[J]. The Annals of Statistics, 1985,13(2): 689-705. [13]RIESENFELD R F. Application of B-spline approximation to geometric problems of computeraided design[D]. Syracuse: Syracuse University, 1973. [14]HUANG J, HOROWITZ J L, WEI F R. Variable selection in nonparametric additive models[J]. The Annals of Statistics, 2010, 38(4): 2282-2313. [15]SHEN X, WOLFE D A, ZHOU S. Local asymptotics for regression splines and confidence regions[J]. The Annals of Statistics, 1998, 26(5): 1760-1782. [16]DU P, CHENG G, LIANG H. Semiparametric regression models with additive nonparametric components and high dimensional parametric components[J]. Computational Statistics & Data Analysis, 2012, 56(6): 2006-2017. |
[1] | TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99-111. |
[2] | LIU Yi,YE Xuemei,XIAO Miyun,L Lijun,HOU Chengyou,LU Zujun. The Preliminary Screening of Hypaphorine High-accumulationStrain by Using the Quick Fluorescent Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 141-148. |
|