Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 151-162.doi: 10.16088/j.issn.1001-6600.2020060802

Previous Articles    

Study on the Spatial Correlation of Air Quality in Central Plains Urban Agglomeration

HE Hanji1, DENG Guangming1,2, GE Menglan1*   

  1. 1. College of Science, Guilin University of Technology, Guilin Guangxi 541004, China;
    2. Institute of Applied Statistics, Guilin University of Technology, Guilin Guangxi 541004, China
  • Received:2020-06-08 Revised:2020-07-01 Published:2021-05-13

Abstract: Based on the air quality data of 29 cities in the central plains urban agglomeration from 2015 to 2018, spatial correlation network modeling is performed on the air quality of the central plains urban agglomeration, and the network index and community detection methods are used to explore the individual role and overall development trend of the air quality in the urban agglomeration. The results show that: (1) The air quality impact centers of the Central Plains urban agglomeration are divided into the northern strip center cluster with Jincheng as the core and the central block center cluster with Zhengzhou as the core. Among them, the northern cluster represents the significant influence of natural environmental conditions and unreasonable heavy industry structure on the northern region; the central cluster highlights the significant impact of the level of economic development and urbanization on urban air quality. In addition, Kaifeng, Xuchang, Luohe, Anyang, and Yuncheng, which have an intermediary role, are distributed at the edge of each circle in the urban agglomeration, which has a greater impact on air quality transmission. (2) The air quality spatial network integrity index of the Central Plains urban agglomeration reaches 0.512 3, which is closely related. The northwest plate with poor air quality environment in the urban agglomeration mainly affects the plate, and has a strong influence on the southeast plate at this stage. (3) The spatial correlation of air quality in the Central Plains urban agglomeration has obvious "gradient" characteristics, rather than exist in isolation. The community testing found that it has a relatively stable binary development trend. This paper analyzes the air quality of urban agglomerations through complex network theory, and aims to provide a scientific basis for preventing and controlling the overall air quality pollution of urban agglomerations.

Key words: air quality, spatial correlation, complex network theory, centrality index, central plains urban agglomeration

CLC Number: 

  • X511
[1]乔玉霜. 中原城市群大气颗粒物的理化特征及毒理学研究[D]. 北京:中国矿业大学, 2011.
[2]候璠. 基于遥感数据的中原城市群PM2.5与城市化水平的时空耦合关系及影响因子研究[D]. 开封:河南大学, 2019.
[3]许燕婷,刘兴诏,王振波. 基于AQI指数的中国城市空气质量时空分布特征[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 187-196.
[4]庄欣,黄晓锋,陈多宏,等. 基于日变化特征的珠江三角洲大气污染空间分布研究[J]. 中国环境科学, 2017, 37(6): 2001-2006.
[5]邢莉, 苏喜军. 中原城市群空气质量指数时空分布特征[J]. 华北水利水电大学学报(社会科学版), 2017,33(6): 38-44.
[6]程麟钧,王帅,宫正宇,等. 中国臭氧浓度的时空变化特征及分区[J]. 中国环境科学, 2017, 37(11):4003-4012.
[7]TIAN Y L, YUAN J, QI L, et al. Temporal and spatial trends in air quality in Beijing[J]. Landscape and Urban Planning, 2019, 185: 35-43.
[8]CHEN N, XU L. Relationship between air quality and economic development in the provincial capital cities of China[J]. Environmental Science and Pollution Research, 2017, 24: 2928-2935.
[9]丁镭,刘超,黄亚林,等. 湖北省城市环境空气质量时空演化格局及影响因素[J]. 经济地理,2016, 36(3): 170-178.
[10]TAN P H, CHOU C, LIANG J Y, et al. Air pollution “holiday effect” resulting from the Chinese New Year[J]. Atmospheric Environment, 2009, 43(13): 2114-2124.
[11]TAN P H, CHOU C, CHOU C C K. Impact of urbanization on the air pollution “holiday effect” in Taiwan[J]. Atmospheric Environment, 2013, 70: 361-375.
[12]SHI K H, WU L F. Forecasting air quality considering the socio-economic development in Xingtai[J]. Sustainable Cities and Society, 2020, 61: 102337.
[13]王丽. 基于复杂网络理论的空气质量数据分析[D]. 镇江: 江苏大学,2017.
[14]谢赤, 毛宁. 金融生态建设与新型城镇化的时空耦合关系[J]. 统计与决策, 2020, 36(3): 92-96.
[15]蒋海兵, 徐建刚, 商硕. 江苏沿海乡镇经济差异的空间分析[J]. 经济地理, 2010, 30(6): 998-1004.
[16]戴平生. 区位基尼系数的计算、性质及其应用[J]. 数量经济技术经济研究, 2015,32(7): 149-160,封3.
[17]赵明, 牛亚兰, 钟金秀, 等. 网络的平均度对复杂网络上动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 88-93.
[18]邹艳丽, 汪洋, 刘树生, 等. 带有邻居度信息的容量负载模型下电网级联故障研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 27-36.
[19]环境保护部国家质量监督检验检疫总局. 环境空气质量标准:GB 3095—2012[S]北京:中国环境科学出版社,2012.
[20]埃里克·D·克拉泽克, 加博尔·乔尔迪. 网络数据的统计分析:R语言实践[M]. 西安:西安交通大学出版社,2016:125-136.
[21]SPELTA A, ARAÚJO T. The topology of cross-border exposures: beyond the minimal spanning tree approach[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(22):5572-5583.
[1] LI Yanlin, HUANG Song. Spatial Relationship and Formation Mechanism Research of GeologicalRelics and Ethnic Cultural Resources in Northern Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 197-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80 -86 .
[2] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[3] ZHUANG Fenghong, MA Jiangming, ZHANG Yajun, SU Jing, YU Fangming. Eco-Physiological Responses of Leaves of Isoetes sinensis to Light Intensity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 93 -100 .
[4] WEI Hongjin, ZHOU Xile, JIN Dongmei, YAN Yuehong. Additions to the Pteridophyte Flora of Hunan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 101 -106 .
[5] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .
[6] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[7] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[8] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[9] HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50 -55 .
[10] FENG Xiu, MA Nannan, ZHI Hongtao, HAN Shuangqiao, ZHANG Xiang. Removal of Low Concentration Cadmium Ion in the Wastewater by Heavy Metal Capturing Agent UDTC[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 63 -67 .