Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 122-130.doi: 10.16088/j.issn.1001-6600.2020.06.014

Previous Articles     Next Articles

Change Pattern of Forest Community along Altitude Gradient in Sejila Mountain, Tibet, China

GAO Hui1,2,3,4,5,6, LIU Lijuan6, FANG Jiangping1,2,3,4,5*   

  1. 1. Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Tibet Nyingchi860000, China;
    2. Tibet Key Laboratory of Forest Ecology in Plateau Area (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Tibet Nyingchi 860000, China;
    3. National Key Station of Field Scientific Observation and Experiment (Tibet Agriculture and Animal Husbandry University), Tibet Nyingchi 860000, China;
    4. Key Laboratory of Forest Ecology in Plateau Area (Tibet Agriculture and Animal Husbandry University), Tibet Autonomous Region, Tibet Nyingchi 860000, China;
    5. United Key Laboratories of Ecological Security (Tibet Agriculture and Animal Husbandry University), Tibet Autonomous Region, Tibet Nyingchi 860000, China;
    6. College of Environmental Science and Engineering, China West Normal University, Nanchong Sichuan 637002, China
  • Received:2019-11-27 Published:2020-11-30

Abstract: In order to reveal the changes of the phylogenetic structure of forest communities in the Qinghai-Tibet Plateau on the elevation gradient and its driving factors. This study took the Tibetan Sejila Mountain forest community as the research subjects, adopted the phylogenetic diversity Faith’s PD index and the phylogenetic β diversity PhyloSor index to analyze phylogenetic diversity of typical forest communities in Tibet, and used the net relatedness index and the nearest taxon index to explore the phylogenetic structure of forest communities with different vegetation types and the variation along the elevation gradient. The results show that the phylogenetic structure (NRI and NTI) of the arbor community accumulates at low altitudes and high altitudes, and the discrete structures are presented in the mid-altitude regions. At all spatial scales, the phylogenetic turnover appears to be non-random, and the environmental distance is significantly higher than the spatial distance for the phylogenetic α and β diversity. The results reveal that environmental filtration plays a leading role in the construction of forest communities and the maintenance of biodiversity in Sejila Mountain, Tibet. There is a significant change in the phylogenetic structure of the community along the elevation gradient. Different community phylogenetic structural indices respond differently to spatial and environmental factor variables. At the same time, it also confirms the crucial role of the non-random process in the process of ecological community construction from the unique geographical unit of the Qinghai-Tibet Plateau.

Key words: Sejila mountain, forest community, phylogenetic alpha diversity, phylogenetic beta diversity, elevation gradient, variation patternizan, Tibet, China

CLC Number: 

  • Q145.2
[1] 曾文豪, 石慰, 唐一思, 等. 广西地区喀斯特与非喀斯特山地森林树木物种多样性及系统发育结构比较[J]. 生态学报, 2018, 38(24): 8707-8716.
[2] JOHNSON M T J, STINCHCOMBE J R. An emerging synthesis between community ecology and evolutionary biology[J]. Trends in Ecology and Evolution, 2007, 22(5): 250-257.
[3] HUBBELL S P.Unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001.
[4] YANG S Z, FAN H, LI K W, et al. How the diversity, abundance, size and climbing mechanisms of woody lianas are related to biotic and abiotic factors in a subtropical secondary forest, Taiwan[J]. Folia Geobotanica, 2018, 53(1): 77-88.
[5] WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology and Evolution, 2006, 21(5): 261-268.
[6] ALI A, LIN S L, HE J K, et al. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests[J]. Forest Ecology and Management, 2019, 432: 823-831.
[7] JIANG F, XUN Y H, CAI H Y, et al. Functional traits can improve our understanding of niche-and dispersal-based processes[J].Oecologia, 2018, 186(3): 783-792.
[8] KRESS W J, ERICKSON D L, SWENSON N G, et al. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot[J].PLoS ONE, 2010, 5(11): e15409.
[9] WEBB C O, ACKERLY D D, McPEEK M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33: 475-505.
[10] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503-7513.
[11] QIAN H. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks[J]. Journal of Systematics and Evolution, 2009, 47(5): 509-514.
[12] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529: 204-207.
[13] KRAFT N J B, COMITA L S, CHASE J M, et al. Disentangling the drivers of beta diversity along latitudinal and elevational gradients[J]. Science, 2011, 333(6050): 1755-1758.
[14] BASELGA A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients[J]. Methods in Ecology and Evolution, 2013, 4(6): 552-557.
[15] 高辉, 方江平, 刘丽娟, 等. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020,38(5):95-103.
[16] CARLUCCI M B, DEBASTIANI V J, PILLAR V D, et al. Between-and within-species trait variability and the assembly of sapling communities in forest patches[J]. Journal of Vegetation Science, 2015, 26(1): 21-31.
[17] SOININEN J,McDONALD R, HILLEBRAND H. The distance decay of similarity in ecological communities[J]. Ecography, 2007, 30(1): 3-12.
[18] LEGENDRE P, MI X C, REN H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China[J]. Ecology, 2009, 90(3): 663-674.
[19] MYERS J A, CHASE J M, JIMÉNEZ I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly[J]. Ecology Letters, 2013, 16(2): 151-157.
[20] ANDERSON M J, CRIST T O, CHASE J M, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19-28.
[21] DRAY S.Spacemake R: Spatial modelling[J]. R Package Version, 2010, 25(4): 17-29.
[22] 刘珉璐, 潘翔, 陈庆辉, 等. 系统发育多样性与系统发育结构在岛屿植物群落保护中的意义: 以蜈支洲岛为例[J]. 热带亚热带植物学报, 2017, 25(5): 419-428.
[23] LASKY J R, YANG J, ZHANG G C, et al. The role of functional traits and individual variation in the co-occurrence of Ficus species[J]. Ecology, 2014, 95(4): 978-990.
[24] MORI A S, FUJII S, KITAGAWA R, et al. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities[J].Oecologia, 2015, 178(1): 261-273.
[25] BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(S1): 11505-11511.
[26] MAYFIELD M M, LEVINE J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010, 13(9): 1085-1093.
[27] 王均伟, 侯嫚嫚, 黄利亚, 等. 长白山阔叶红松林系统发育和功能性状beta多样性[J]. 北京林业大学学报, 2016, 38(10): 21-27.
[28] 田平, 程小琴, 韩海荣, 等. 环境因子对山西太岳山典型森林类型物种多样性及其功能多样性的影响[J]. 西北植物学报, 2017, 37(5): 992-1003.
[29] KOOYMAN R, ROSSETTO M, CORNWELL W, et al. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests[J]. Global Ecology and Biogeography, 2011, 20(5): 707-716.
[30] FANG J Y, WANG X P, TANG Z Y. Local and regional processes control species richness of plant communities: the species pool hypothesis[J]. Biodiversity Science, 2009, 17(6): 605-612.
[31] SWENSON N G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities[J]. PLoS ONE, 2011, 6(6):e21264.
[1] GAO Hui, FANG Jiangping, LIU Lijuan, LIU Xi. Relationship between Spatial Structure and Environment of Original Picea likiangensis var. linzhiensis Forest in Tibet [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1 -10 .
[2] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12 -23 .
[3] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1 -13 .
[4] HU Jinming, WEI Duqu. Research on Generalized Sychronization of Fractional-order PMSM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 14 -20 .
[5] ZHU Yongjian, LUO Jian, QIN Yunbai, QIN Guofeng, TANG Chuliu. A Method for Detecting Metal Surface Defects Based on Photometric Stereo and Series Expansion Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 21 -31 .
[6] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32 -39 .
[7] ZHANG Ruchang, QIU Jie, WANG Mingtang, CHEN Qingfeng. Classification of Protein 3D Structure Based on Adaptive Local Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 40 -50 .
[8] CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51 -55 .
[9] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56 -64 .
[10] WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65 -73 .