Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 74-81.doi: 10.16088/j.issn.1001-6600.2020.06.009
Previous Articles Next Articles
HUANG Chunxian1, ZHOU Xiaoliang2*
CLC Number:
[1] BRAUER F,CASTILLO-CHAVEZ C.Mathematical models in population biology and epidemiology[M]. New York:Springer,2012. [2] 郝丽杰,蒋贵荣,鹿鹏.具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J].广西师范大学学报(自然科学版),2012,30(4):42-47. [3] GOMES M G M,WHITE L J,MEDLEY G F.Infection,reinfection,and vaccination under suboptimal immune protection: epidemiological perspectives[J].Journal of Theoretical Biology,2004,228(4) :539-549.DOI:10.1016/j.jtbi.2004.02.015. [4] 邢伟,高晋芳,颜七笙,等.具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J].广西师范大学学报(自然科学版),2017,35(2):58-65. DOI:10.16088/j.issn.1001-6600.2017.02.009. [5] KERMACK W O,MCKENDRICK A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London: Series A,1927,115:700-721. [6] ZHOU J S.An SIS disease transmission model with recruitment-birth-death demographics[J].Mathematical &Computer Modelling,1995,21(11):1-11.DOI:10.1016/0895-7177(95)00074-C. [7] ZHU C J. Critical result on the threshold of a stochastic SIS model with saturated incidence rate[J].Physica A:Statistical Mechanics and Its Applications,2019,523:426-437.DOI:10.1016/j.physa.2019.02.012. [8] 杨鲲,林娇,蒋贵荣.具有脉冲生育的随机SIS传染病模型的动力学分析[J].广西师范大学学报(自然科学版),2015,33(4):81-86.DOI:10.16088/j.issn.1001-6600.2015.04.014. [9] 冯金明,李遵先.一类具扩散的传染病模型的稳定性分析[J].广西师范大学学报(自然科学版),2018,36(2):63-68.DOI:10.16088/j.issn.1001-6600.2018.02.009. [10] GOMES M G M,MARGHERI A,MEDLEY G F,et al.Dynamical behavior of epidemiological models with sub-optimal immunity and nonlinear incidence[J].Journal of Mathematical Biology,2005,51:414-430. [11] 马知恩, 周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004. [12] LU M,HUANG J C,RUAN S G,et al.Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate[J].Journal of Differential Equations,2019,267(3):1859-1898.DOI:10.1016/j.jde.2019.03.005. [13] WHITE E,COMISKEY C.Heroin epidemics,treatment and ODE modelling[J].Mathematical Biosciences,2007,208(1): 312-324.DOI:10.1016/j.mbs.2006.10.008. [14] MULONE G,STRAUGHAN B.A note on heroin epidemics[J].Mathematical Biosciences,2009,218(2):138-141.DOI:10.1016/j.mbs.2009.01.006. [15] LIU J L,ZHANG T L. Global behaviorof a heroin epidemic model with distributed delays[J].Applied Mathematics Letters,2011,24(10):1685-1692.DOI:10.1016/j.aml.2011.04.019. [16] HUANG G,LIU A P. A note on global stability for a heroin epidemic model with distributed delay[J].Applied Mathematics Letters,2013,26(7):687-691.DOI:10.1016/j.aml.2013.01.010. [17] MUROYA Y,LI H X,KUNIYA T.Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates[J].Journal of Mathematical Analysis and Applications,2014,410(2):719-732.DOI:10.1016/j.jmaa.2013.08.024. [18] 史学伟,贾建文.一类具有信息变量和等级治愈率的SIR传染病模型的研究[J].山东大学学报(理学版),2016,51(3):51-59,69.DOI:10.6040/j.issn.1671-9352.0.2015.212. [19] MA M J,LIU S Y,LI J. Bifurcation of a heroin model with nonlinear incidence rate[J].Nonlinear Dynamics,2017,88:555-565.DOI:10.1007/s11071-016-3260-9. [20] LIU W M,LEVIN S A,IWASA Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23:187-204.DOI:10.1007/BF00276956. [21] LIZANA M,RIVERO J. Multiparametric bifurcations for a model in epidemiology[J].Journal of Mathematical Biology,1996,35:21-36.DOI:10.1007/s002850050040. [22] CASTILLO-CHAVEZ C,SONG B J. Dynamical models of tuberculosis and their applications[J].Mathematical Biosciences and Engineering,2004,1(2):361-404.DOI:10.3934/mbe.2004.1.361. |
[1] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
[2] | CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21. |
[3] | LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63. |
[4] | YU Hai-dong, LUO Yun-feng. Quality Control Implementation of CI System:Nash Equilibrium and Screening [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 28-32. |
[5] | FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53. |
|