Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 74-81.doi: 10.16088/j.issn.1001-6600.2020.06.009

Previous Articles     Next Articles

Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates

HUANG Chunxian1, ZHOU Xiaoliang2*   

  1. 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou Fujian 363000, China;
    2. School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang Guangdong 524048, China
  • Received:2019-09-05 Published:2020-11-30

Abstract: In this paper, an SIRS heroin model with graded cure and incomplete recovery rates is studied. Firstly, the limit set of the system is used to reduce a three-dimensional system to two-dimension system,and equilibrium topological types of the system are verified by analyzing the eigenvalues in detail. Then, it is shown that the system undergoes forward bifurcation with the change of bifurcation parameters. Finally, the phase diagram and state variable curve of the system under different bifurcation parameters are obtained through numerical simulations with the help of ODE45 software package in Matlab, which intuitively show the correctness of the conclusion.

Key words: SIRS model, graded cure, equilibrium, forward bifurcation, numerical simulation

CLC Number: 

  • O175
[1] BRAUER F,CASTILLO-CHAVEZ C.Mathematical models in population biology and epidemiology[M]. New York:Springer,2012.
[2] 郝丽杰,蒋贵荣,鹿鹏.具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J].广西师范大学学报(自然科学版),2012,30(4):42-47.
[3] GOMES M G M,WHITE L J,MEDLEY G F.Infection,reinfection,and vaccination under suboptimal immune protection: epidemiological perspectives[J].Journal of Theoretical Biology,2004,228(4) :539-549.DOI:10.1016/j.jtbi.2004.02.015.
[4] 邢伟,高晋芳,颜七笙,等.具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J].广西师范大学学报(自然科学版),2017,35(2):58-65. DOI:10.16088/j.issn.1001-6600.2017.02.009.
[5] KERMACK W O,MCKENDRICK A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London: Series A,1927,115:700-721.
[6] ZHOU J S.An SIS disease transmission model with recruitment-birth-death demographics[J].Mathematical &Computer Modelling,1995,21(11):1-11.DOI:10.1016/0895-7177(95)00074-C.
[7] ZHU C J. Critical result on the threshold of a stochastic SIS model with saturated incidence rate[J].Physica A:Statistical Mechanics and Its Applications,2019,523:426-437.DOI:10.1016/j.physa.2019.02.012.
[8] 杨鲲,林娇,蒋贵荣.具有脉冲生育的随机SIS传染病模型的动力学分析[J].广西师范大学学报(自然科学版),2015,33(4):81-86.DOI:10.16088/j.issn.1001-6600.2015.04.014.
[9] 冯金明,李遵先.一类具扩散的传染病模型的稳定性分析[J].广西师范大学学报(自然科学版),2018,36(2):63-68.DOI:10.16088/j.issn.1001-6600.2018.02.009.
[10] GOMES M G M,MARGHERI A,MEDLEY G F,et al.Dynamical behavior of epidemiological models with sub-optimal immunity and nonlinear incidence[J].Journal of Mathematical Biology,2005,51:414-430.
[11] 马知恩, 周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
[12] LU M,HUANG J C,RUAN S G,et al.Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate[J].Journal of Differential Equations,2019,267(3):1859-1898.DOI:10.1016/j.jde.2019.03.005.
[13] WHITE E,COMISKEY C.Heroin epidemics,treatment and ODE modelling[J].Mathematical Biosciences,2007,208(1): 312-324.DOI:10.1016/j.mbs.2006.10.008.
[14] MULONE G,STRAUGHAN B.A note on heroin epidemics[J].Mathematical Biosciences,2009,218(2):138-141.DOI:10.1016/j.mbs.2009.01.006.
[15] LIU J L,ZHANG T L. Global behaviorof a heroin epidemic model with distributed delays[J].Applied Mathematics Letters,2011,24(10):1685-1692.DOI:10.1016/j.aml.2011.04.019.
[16] HUANG G,LIU A P. A note on global stability for a heroin epidemic model with distributed delay[J].Applied Mathematics Letters,2013,26(7):687-691.DOI:10.1016/j.aml.2013.01.010.
[17] MUROYA Y,LI H X,KUNIYA T.Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates[J].Journal of Mathematical Analysis and Applications,2014,410(2):719-732.DOI:10.1016/j.jmaa.2013.08.024.
[18] 史学伟,贾建文.一类具有信息变量和等级治愈率的SIR传染病模型的研究[J].山东大学学报(理学版),2016,51(3):51-59,69.DOI:10.6040/j.issn.1671-9352.0.2015.212.
[19] MA M J,LIU S Y,LI J. Bifurcation of a heroin model with nonlinear incidence rate[J].Nonlinear Dynamics,2017,88:555-565.DOI:10.1007/s11071-016-3260-9.
[20] LIU W M,LEVIN S A,IWASA Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23:187-204.DOI:10.1007/BF00276956.
[21] LIZANA M,RIVERO J. Multiparametric bifurcations for a model in epidemiology[J].Journal of Mathematical Biology,1996,35:21-36.DOI:10.1007/s002850050040.
[22] CASTILLO-CHAVEZ C,SONG B J. Dynamical models of tuberculosis and their applications[J].Mathematical Biosciences and Engineering,2004,1(2):361-404.DOI:10.3934/mbe.2004.1.361.
[1] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[2] CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21.
[3] LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63.
[4] YU Hai-dong, LUO Yun-feng. Quality Control Implementation of CI System:Nash Equilibrium and Screening [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 28-32.
[5] FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1 -10 .
[2] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12 -23 .
[3] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1 -13 .
[4] HU Jinming, WEI Duqu. Research on Generalized Sychronization of Fractional-order PMSM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 14 -20 .
[5] ZHU Yongjian, LUO Jian, QIN Yunbai, QIN Guofeng, TANG Chuliu. A Method for Detecting Metal Surface Defects Based on Photometric Stereo and Series Expansion Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 21 -31 .
[6] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32 -39 .
[7] ZHANG Ruchang, QIU Jie, WANG Mingtang, CHEN Qingfeng. Classification of Protein 3D Structure Based on Adaptive Local Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 40 -50 .
[8] CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51 -55 .
[9] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56 -64 .
[10] WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65 -73 .