Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 56-64.doi: 10.16088/j.issn.1001-6600.2020.06.007
Previous Articles Next Articles
ZUO Jiabin1,2*, YUN Yongzhen1
CLC Number:
[1] KILBAS A A, SRIVASTAVA H M,TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier,2006. [2] ZHANG X Q,WANG L,SUN Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter[J]. Applied Mathematics and Computation,2014,226(1): 708-718. [3] 闫荣君,韦煜明,冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版),2017,35(3):75-82. [4] 黄燕萍,韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版),2018,36(3): 41-49. [5] 康淑瑰,岳亚卿,郭建敏. 分数阶微分方程奇异系统边值问题正解的存在性[J]. 西南大学学报(自然科学版),2019,41(4): 104-108. [6] 蔡蕙泽,韩晓玲. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 四川大学学报(自然科学版),2019,56(4): 614-620. [7] HEDAYATI V, SAMEI M E. Positive solutions of fractional differential equation with two pieces in chain interval and simultaneous Dirichlet boundary conditions[J]. Boundary Value Problems,2019,2019:141. [8] RAKHSHAN S A,EFFATI S. A generalized Legendre-Gauss collocation method for solving nonlinear fractional differential equations with time varying delays[J]. Applied Numerical Mathematics,2019,146: 342-360. [9] 康文彦,高巧琴. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 通化师范学院学报(自然科学),2016,37(6): 28-30. [10] 张红雷,苏莹. 一类无穷区间上分数阶微分方程正解的存在性[J]. 数学的实践与认识,2019,49(8): 226-235. [11] ZHOU W X,LIU X. Uniqueness on positive solutions for boundary value problem of singularfractional differential equations[J]. Chiness Journal of Engineering Mathematic,2014,31(2): 300-309. [12] AHMAD B,NIETO J J. Anti-periodic fractional boundary value problems[J]. Computers and Mathematics with Applications,2011,62(3): 1150-1156. [13] 贠永震,苏有慧,胡卫敏. 一类带有p-Laplacian的分数阶微分方程反周期边值问题解的存在性[J]. 宁夏大学学报(自然科学版),2016,37(3): 5-8,14. [14] JIANG J. Solvability of anti-periodic boundary value problem for coupled system of fractional p-Laplacian equation[J]. Advances in Difference Equations,2015,2015:305. [15] LIU J H,CHENG S H,ZHANG L T. Anti-periodic mild solutions to semilinear fractional differential equations[J]. Journal of Applied Mathematics and Computing,2015,48(1/2): 381-393. [16] LI X H,HAN Z L,SUN S R. Anti-periodic boundary value problems for fractional q-difference equations[J]. Journal of Applied Mathematics and Computing,2016,50(1/2): 243-257. [17] AKTUĞLU H,ÖZARSLAN M A. Solvability of differential equations of order 2<α≤3 involving the p-Laplacian operator with boundary conditions[J]. Advances in Difference Equations,2013, 2013:358 [18] JIN H,LIU W B. On the periodic boundary value problem for Duffing type fractional differentialequation with p-Laplacian operator[J]. Boundary Value Problems,2015,2015:144. [19] SMART D R. Fixed point theorems[M]. Cambridge: Cambridge University Press,1974. [20] 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian 算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报:A辑,2018,38(6): 1162-1172. [21] 贠永震,苏有慧,胡卫敏. 一类Caputo分数阶p-Laplace反周期边值问题解的存在性[J]. 西北师范大学学报(自然科学版),2017,53(3): 13-18. |
[1] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
|