Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (2): 19-28.doi: 10.16088/j.issn.1001-6600.2020.02.003
Previous Articles Next Articles
ZHANG Yongsheng1, ZHU Wenjun2, SHI Ruoqi2, DU Zhenhua3, ZHANG Rui3, WANG Zhi2*
CLC Number:
[1] 中国互联网络信息中心. 第42次中国互联网络发展状况统计报告[R/OL]. (2018-08-20)[2019-10-08]. http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201808/t20180820_70488.htm. [2] MA Z, GE H, LIU Y, et al. A combination method for android malware detection based on control flow graphs and machine learning algorithms[J]. IEEE Access, 2019, 7: 21235-21245. [3] VINOD P, ZEMMARI A, CONTI M. A machine learning based approach to detect malicious android apps using discriminant system calls[J]. Future Generation Computer Systems, 2019, 94: 333-350. [4] CAI H, MENG N, RYDER B, et al. Droidcat: Effective android malware detection and categorization via app-level profiling[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1455-1470. [5] HAN Weijie, XUE Jingfeng, YONG Wang, et al. MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics[J]. Computers and Security, 2019, 83: 208-233. [6] SARACINO A, SGANDURRA D, DINI G,et al. MADAM: Effective and efficient behavior-based android malware detection and prevention[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 83-97. [7] CHEN T M, MAO Q Y, YANG Y M,et al. TinyDroid: A lightweight and efficient model for Android malware detection and classification[J]. Mobile Information Systems, 2018, 2018: 4157156. [8] CHEN L W, HOU S F, YE Y F, et al. DroidEye: Fortifying security of learning-based classifier against adversarial Android malware attacks[C]//2018: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway, NJ: IEE Press, 2018: 782-789. [9] 王全民, 张帅帅, 杨晶. 一种基于协同训练的Android恶意代码检测方法[J]. 计算机技术与发展,2019,29(1): 135-139. [10]SHAFER G, VOVK V. A tutorial on conformal prediction[J]. Journal of Machine Learning Research, 2008, 9(3): 371-421. [11]JORDANEY R, SHARAD K, DASH S K, et al. Transcend: Detecting concept drift in malware classification models[C]//Proceedings of the 26th: Usenix Security Symposium. Vancouver: USENIX, 2017: 625-642. [12]ARP D, SPREITZENBARTH M, HUBNER M, et al. DREBIN: Effective and explainable detection of Android malware in your pocket[C]//NDSS Symposium 2014. San Diego, CA: NDSS, 2014. DOI:10.14722/ndss.2014.23247. [13]黄衍, 查伟雄. 随机森林与支持向量机分类性能比较[J]. 软件, 2012, 33(6): 107-110. |
[1] | LIN Yue,LIU Tingzhang,WANG Zhehe. Quantity Optimization of Virtual Sample Generation with Two Kinds of Upper Bound Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 142-148. |
[2] | ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119-124. |
|