Journal of Guangxi Normal University(Natural Science Edition) ›› 2012, Vol. 30 ›› Issue (2): 66-70.

Previous Articles     Next Articles

A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment

HU Hua   

  1. School of Mathematics and Computer Science,Ningxia University,Yinchuan Ningxia 750021,China
  • Received:2012-01-15 Online:2012-06-20 Published:2018-12-03

Abstract: This paper considers a rescaled process (Xη,εt)t≥0,and it's assumed that {η(x)}x∈Zis distributed by a locally ergodic probability measure.The limit of the rescaled process is studied as ε→0.It is proved that under local ergodicity distributions,the rescaled process converges in distribution με to the diffusion process on R with infinitesimal generator ddXa(X)ddXf(X),for second-order continuous differentiablefunction f(X) on R and a certain homogenized diffusion functiona(X) which is independent of η.

Key words: locally ergodic, random walk, rescaled process, infinitesimal generator

CLC Number: 

  • O211.6
[1] KOZLOV S M.The method of averaging and walks in inhomogeneous environments[J].Russian Math Surveys,1985,40(2):73-145.
[2] 李勇.一类平移不变无穷粒子反应扩散过程的遍历性[J].数学年刊:A辑,1995,16(2):223-229.
[3] SIRI P.Asymptotic behaviour of a tagged particle in an inhomogeneous zero-range process[J].Stochastic Process Appl,1998,77(2):139-154.
[4] GRIGORESCU I.Self-diffusion for Brownian motions with local interaction[J].Ann Probab,1999,27(3):1208-1267.
[5] 周宗林.关于一类非平衡交互作用粒子系统的相变[J].数学年刊:A辑,1996,17(3):301-310.
[6] 王子亭.随机介质中扩散过程的尺度跃迁[J].数学的实践与认识,2001,31(5):550-555.
[7] ANSHELEVICH V V,KHANIN K M,SINAI Y G.Symmetric random walks in random environments[J].Comm Math Phys,1982,85(3):449-470.
[8] KUNNEMANN R.The diffusion limit for reversible jump processes onZd
with ergodic random bond conductivities[J].Comm Math Phys,1983,90(1):27-68.
[9] De MASI A,FERRARI P A,GOLDSTEIN S,et al.An invariance principle forreversible Markov processes.Applications to random motions in random environments[J].J Statist Phys,1989,55(3/4):787-855.
[10] KIPNIS C,VARADHAN S R S.Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions[J].Comm Math Phys,1986,104(1):1-19.
[11] STROOCK D W,ZHENG Wei-an.Markov chain approximations to symmetric diffusions[J].Ann Inst Henri Poincare:ProbabStatist,1997,33(5):619-649.
[12] FABES E,STROOCK D W.The De Giorgi-Moser Harnack principle via the old ideas of Nash[J].Arch Rational Mech Anal,1987,96(4):327-338.
[13] CARLEN E,KUSUOKA S,STROOCK D W.Upper bounds for symmetric Markovtransition functions[J].Ann Inst Henri Poincare:Probab Statist,1987,23(2):245-287.
[1] ZHOU Jun-jun, WANG Ming-wen, HE Shi-zhu, SHI Song. A Collaborative Filtering Algorithm Based on Random Walkand Cluster-based Smoothing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 173-178.
[2] WU Di, ZHOU Li-juan, LIN Hong-fei. Design and Implementation of Job Recommendation System for GraduatesBased on Random Walk [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 179-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!