Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (3): 105-109.

Previous Articles     Next Articles

A Rough Kernel Clustering Algorithm Based on ImprovedAttribute Reduction

XU Li1, DING Shi-fei1,2, GUO Feng-feng1   

  1. 1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;
    2.Key Laboratory of Intelligent Information Processing,Institute ofComputing Technology,ChineseAcademy of Science,Beijing 100080,China
  • Received:2011-05-16 Online:2011-08-20 Published:2018-12-03

Abstract: Kernel clustering is an effective algorithm which can deal with samples that have weak differences.On the basis that of new improved attribute importance under the theoryof rough set is applied to the kernel clustering algorithm.Before the samplesare optimized by the kernel function,their properties is processed by the reduction algorithmwhich is based on the attribute importance.At the same time,Information Entropyis introduced to improve the reduction algorithm.So the redundant attributes aredeleted and the optimum set of attributes is obtained;Then,the samples areclustered by K-means clustering algorithms,and the samples are divided intotheupper and lower approximate subsets of the corresponding cluster centers.Due tothe samples in approximate subsets having different influence on cluster,different weighs are designed to determine the new clustering centers.This paper adopts UCI data sets to test the performance ofthe algorithm.Through the comparison with traditional kernel clustering algorithmis shows that the proposed clustering algorithm improves the cluster result'saccuracy,reduces the complexity and shortens the convergence time significantly.

Key words: rough set, attribute reduction, attribute importance, information entropy, kernel clustering

CLC Number: 

  • TP181
[1] JAIN A K,DUBES R C.Algorithms for clustering data[M].Englewood Cliffs,NJ:Prentice-Hall,1988:1-29.
[2] 艾晶,宋自林,赵靓,等.聚类思想在挖掘关联规则中的运用[J].广西师范大学学报:自然科学版,2009,27(1):117-120.
[3] 孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
[4] DING Shi-fei,XU Li,ZHU Hong,et al.Research and progress of cluster algorithms based on granular computing[J].International Journal of DigitalContent Technology and its Applications,2010,4(5):96-104.
[5] 张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590.
[6] 孔锐,张国宣,施泽生,等.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-15.
[7] 贺玲,蔡益朝,杨征.高维数据聚类方法综述[J].计算机应用研究,2010,27(1):23-26.
[8] 丁浩,丁世飞,胡立花.基于粗糙集的属性约简研究进展[J].计算机工程与科学,2010,32(6):92-94.
[9] 彭云,丁树良.基于属性约简的聚类分析技术[J].计算机工程与应用,2009,45(9):138-140.
[10] 周涛,张艳宁,袁和金,等.粗糙核K-means聚类算法[J].系统仿真学报,2008,20(4):921-925.
[11] PAWLAK Z.Rough set[J].International Journal of Computer and Information Science,1982,11(15):341-356.
[12] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246.
[13] 陈玉明,苗夺谦,焦娜.基于二进制粒与粒计算的属性约简[J].广西师范大学学报:自然科学版,2008,26(2):81-84.
[14] 苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008:152-174.
[15] 王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766.
[16] 吴尚智,苟平章.粗糙集和信息熵的属性约简算法及其应用[J].计算机工程,2011,37(7):56-61.
[1] LIN Yue,LIU Tingzhang,WANG Zhehe. Quantity Optimization of Virtual Sample Generation with Two Kinds of Upper Bound Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 142-148.
[2] HU Yu-wen, XU Jiu-cheng, SUN Lin. Decision Evolution Sets [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 23-29.
[3] LIU Hai-feng, XU Xin-ying, SHEN Xue-fen, XIE Jun. Attribute Reduction of Incomplete Mixed Decision System Based on Limited Neighborhood Relation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 30-36.
[4] SHEN Xue-fen, XIE Jun, LIU Hai-feng, XU Xin-ying. Improved Incremental Attribute Reduction Algorithm Based on Relative Positive Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 45-50.
[5] XU Zhang-yan, ZENG Yan-yan. Algorithm for Computing Core Based on Knowledge Granulation in Incomplete Decision Table [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 154-158.
[6] HU Hui-ying, ZHONG Zhi, YUAN Chang-an, LU Jian-bo, YUAN hui. Gene Expression Programming Based on Attribute Reduction of RoughSet [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 23-28.
[7] ZHANG Qing-hua, XING Yu-ke. A Quick Algorithm for Value ReductionBased on Hash Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 39-44.
[8] YAN Lin, LIANG Ji-ye, WANG Jun-hong. Rules Extraction Method Based on Equivalence Describe Matrix [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 94-100.
[9] E Xu, SHAO Liang-shan, LI Sheng, WANG Quan-tie. Discretization Algorithm for Interval Numbers by Associated Degree [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!