Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 101-109.doi: 10.16088/j.issn.1001-6600.2024040309

Previous Articles     Next Articles

Optimization of Extraction Process of Navel Orange Peel Soluble Dietary Fiber and Its in vitro Prebiotic Activity Evaluation

WANG Yuerong1,2,3, ZHAO Guanghe1,2,3,4*, ZHAO Fengli1,2,3, QIN Yunbin1,2,3, CHEN Jing1,2,3, ZHANG Hong1,2,3   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Enviromental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    4. Institute of Applied Biology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-04-03 Revised:2024-05-17 Online:2025-01-05 Published:2025-02-07

Abstract: The soluble dietary fiber (SDF) in navel orange peel was extracted by ultrasonic wave combined with cellulase-assisted extraction method. The extraction process of SDF was optimized by single factor test and response surface methodology and its in vitro prebiotic activity was evaluated, so as to provide technical reference for developing high quality navel orange peel SDF. The results showed that the optimal conditions to extract orange peel SDF of ultrasonic wave combined with cellulase-assisted extraction method were as follows: liquid-solid ratio 16 mL/g, ultrasonic power 45 W/L, ultrasonic time 40 min and enzyme addition 10.0 μL/g. Under these conditions,the extraction yield of SDF was 11.88%. In vitro fermentation experiments showed that the SDF from modified navel orange peel by ultrasonic wave combined with cellulose treatment exhibited excellent probiotic activity. Therefore, ultrasonic wave combined with cellulase hydrolysis can be considered as an excellent method to modify dietary fiber of navel orange peel, which can provide reference for its application in functional foods.

Key words: navel orange peel, water-soluble dietary fiber, ultrasonic wave, cellulase, probiotic activity

CLC Number:  TS209
[1] JAKOBEK L, MATIĆ P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science Technology, 2019, 83: 235-247. DOI: 10.1016/j.tifs.2018.11.024.
[2] MA M M, MU T H. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure[J]. Carbohydrate Polymers, 2016, 136: 87-94. DOI: 10.1016/j.carbpol.2015.09.030.
[3] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids, 2019, 89: 773-782. DOI: 10.1016/j.foodhyd.2018.11.024.
[4] SHAH R B, LI B, WANG L, et al. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5(2): 179-187. DOI: 10.1016/j.bcdf.2015.03.007.
[5] QIAO H Z, SHAO H M, ZHENG X J, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry, 2021, 335:127522. DOI: 10.1016/j.foodchem.2020.127522.
[6] ZHU Z Y, DONG F Y, LIU X C, et al. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia[J]. Carbohydrate Polymers, 2016, 140: 461-471. DOI: 10.1016/j.carbpol.2015.12.053.
[7] HONG C J, CHEN S Y, HSU Y H, et al. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFAs production in rats with TNBS-induced colitis[J]. Food Research International, 2022, 157: 111390. DOI: 10.1016/j.foodres.2022.111390.
[8] PANWAR D, SAINA A, PANESAR P S, et al. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy[J]. Trends in Food Science Technology, 2021, 111: 549-562. DOI: 10.1016/J.TIFS.2021.03.018.
[9] KIESERLING K, VU T M, DRUSCH S, et al. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt[J]. Food Hydrocolloids, 2019, 94: 152-163. DOI: 10.1016/j.foodhyd.2019.02.051.
[10] DE MORAES CRIZEL T, JABLONSKI A, DE OLIVEIRA RIOS A, et al. Dietary fiber from orange byproducts as a potential fat replacer[J]. LWT-Food Science and Technology, 2013, 53(1): 9-14. DOI: 10.1016/j.lwt.2013.02.002.
[11] WANG K L, LI M, WANG Y X, et al. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids, 2021, 110:106162. DOI: 10.1016/j.foodhyd.2020.106162.
[12] MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry, 2016, 194: 237-246. DOI: 10.1016/j.foodchem.2015.07.095.
[13] 朱广成, 杨慧, 路风银, 等. 超声辅助酶法提取绿芦笋可溶性膳食纤维工艺条件优化[J]. 食品研究与开发, 2020, 41(20): 130-136. DOI: 10.12161/j.issn.1005-6521.2020.20.022.
[14] 李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技, 2021, 46(4): 194-201. DOI: 10.13684/j.cnki.spkj.2021.04.030.
[15] 张智, 宋伟, 闫建英, 等. 油茶粕膳食纤维的超声辅助酶法提取工艺优化及理化性质分析[J]. 食品工业科技, 2022, 43(18): 162-169.DOI: 10.13386/j.issn1002-0306.2021100124.
[16] 魏决, 赵刚, 唐晓慧. 苦荞麦麸皮膳食纤维提取工艺的优化[J]. 食品科技, 2015, 40(9): 227-231. DOI: 10.13684/j.cnki.spkj.2015.09.049.
[17] 张梦云. 麦麸膳食纤维的改性和应用及其对乳酸菌的益生效应[D]. 合肥:合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.000074.
[18] 王天, 江含秀, 路丽妮, 等. 藜麦可溶性膳食纤维提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂, 2022, 33(2): 137-146. DOI: 10.19804/j.issn1006-2513.2022.02.018.
[19] 王丹丹, 董文江, 赵建平, 等. 剪切乳化辅助酶法提取咖啡果皮可溶性膳食纤维[J]. 热带作物学报, 2019, 40(3): 567-575. DOI: 10.3969/j.issn.1000-2561.2019.03.022.
[20] 巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品科技, 2020, 41(6): 8-14. DOI: 10.13386/j.issn1002-0306.2020.06.002.
[21] 梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技, 2020, 41(17): 199-205. DOI: 10.13386/j.issn1002-0306.2020.17.033.
[22] 朱凤霞, 梁盈, 林亲录, 等. 响应面法优化超声辅助酶法提取米糠水溶性膳食纤维[J]. 食品工业科技, 2015, 36(14): 194-198. DOI: 10.13386/j.issn1002-0306.2015.14.032.
[23] AKBARI-ALAVIJEH S, SOLEIMANIAN-ZAD S, SHEIKH-ZEINODDIN M, et al. Pistachio hull water-soluble polysaccharides as a novel prebiotic agent[J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 808-816. DOI: 10.1016/j.ijbiomac.2017.09.049.
[24] 尹立晨, 童群义. 改性豆渣膳食纤维的理化性质、结构及其益生活性研究[J]. 食品与发酵工业, 2022, 48(3): 141-148. DOI: 10.13995/j.cnki.11-1802/ts.028365.
[1] PENG Liting, RUAN Ruimei, ZHAO Guanghe, ZHAO Fengli, QIN Yunbin. Physicochemical, Functional and Structural Properties of Citrus Peel and Pomace Powders Affected by Different Physical Treatments [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 85-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .