Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 81-88.doi: 10.16088/j.issn.1001-6600.2023110105
Previous Articles Next Articles
CHEN Xiufeng*, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin
| [1] LIANG X Y, DU X S, WANG G L, et al. A deep reinforcement learning network for traffic light cycle control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1243-1253. DOI: 10.1109/TVT.2018.2890726. [2] YANG J C, ZHANG J P, WANG H H. Urban traffic control in software defined Internet of things via a multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3742-3754. DOI: 10.1109/TITS.2020.3023788. [3] TAN T, BAO F, DENG Y, et al. Cooperative deep reinforcement learning for large-scale traffic grid signal control[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2687-2700. DOI: 10.1109/TCYB.2019.2904742. [4] SHABESTARY S M A, ABDULHAI B. Deep learning vs. discrete reinforcement learning for adaptive traffic signal control[C] // 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ: IEEE Press, 2018: 286-293. DOI: 10.1109/ITSC.2018.8569549. [5] 陆丽萍,程垦,褚端峰,等.基于竞争循环双Q网络的自适应交通信号控制[J].中国公路学报,2022,35(8):267-277.DOI:10.19721/j.cnki.1001-7372.2022.08.025. [6] KUMAR N, RAHMAN S S, DHAKAD N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4919-4928. DOI: 10.1109/TITS.2020.2984033. [7] GENDERS W, RAZAVI S. Using a deep reinforcement learning agent for traffic signal control[EB/OL]. (2016-11-03)[2023-12-06]. https://arxiv.org/abs/1611.01142. DOI: 10.48550/arXiv.1611.01142. [8] ZHANG X S, HE Z C, ZHU Y T, et al. DRL-based adaptive signal control for bus priority service under connected vehicle environment[J]. Transportmetrica B: Transport Dynamics, 2023, 11(1): 1455-1477. DOI: 10.1080/21680566.2023.2215955. [9] 赖建辉.基于D3QN的交通信号控制策略[J].计算机科学,2019,46(增刊2):117-121. [10] MEI H, LI J X, SHI B, et al. Reinforcement learning approaches for traffic signal control under missing data[EB/OL]. (2023-04-25)[2023-12-06]. https://arxiv.org/abs/2304.10722. DOI: 10.48550/arXiv.2304.10722. [11] ZHENG G J, ZANG X S, XU N, et al. Diagnosing reinforcement learning for traffic signal control[EB/OL]. (2019-05-12)[2023-12-06]. https://arxiv.org/abs/1905.04716. DOI: 10.48550/arXiv.1905.04716. [12] GENDERS W, RAZAVI S. Evaluating reinforcement learning state representations for adaptive traffic signal control[J]. Procedia Computer Science, 2018, 130: 26-33. DOI: 10.1016/j.procs.2018.04.008. [13] 唐宏,刘小洁,甘陈敏,等.超密集网络中基于改进DQN的接入选择算法[J].哈尔滨工业大学学报,2023,55(5):107-113.DOI:10.11918/202204106. [14] 周瑶瑶,李烨.基于排序优先经验回放的竞争深度Q网络学习[J].计算机应用研究,2020,37(2):486-488.DOI:10.19734/j.issn.1001-3695.2018.06.0513. [15] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. DOI: 10.1038/nature14236. [16] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL]. (2016-02-25)[ 2023-12-06]. https://arxiv.org/abs/1511.05952. DOI: 10.48550/arXiv.1511.05952. [17] 徐东伟,周磊,王达,等.基于深度强化学习的城市交通信号控制综述[J].交通运输工程与信息学报,2022,20(1):15-30.DOI:10.19961/j.cnki.1672-4747.2021.04.017. [18] 刘智敏,叶宝林,朱耀东,等.基于深度强化学习的交通信号控制方法[J].浙江大学学报(工学版),2022,56(6):1249-1256.DOI:10.3785/j.issn.1008-973X.2022.06.024. [19] GAO J T, SHEN Y L, LIU J, et al. Adaptive traffic signal control: deep reinforcement learning algorithm with experience replay and target network[EB/OL]. (2017-05-08)[2023-12-06]. https://arxiv.org/abs/1705.02755. DOI: 10.48550/arXiv.1705.02755. [20] MURESAN M, FU L P, PAN G Y. Adaptive traffic signal control with deep reinforcement learning an exploratory investigation[EB/OL]. (2019-01-07)[2023-12-06]. https://arxiv.org/abs/1901.00960. DOI: 10.48550/arXiv.1901.00960. [21] YU B Q, GUO J Q, ZHAO Q P, et al. Smarter and safer traffic signal controlling via deep reinforcement learning[C] // Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2020: 3345-3348. DOI: 10.1145/3340531.3417450. |
| [1] | TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67-80. |
| [2] | ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49-57. |
| [3] | TANG Fengzhu, TANG Xin, LI Chunhai, LI Xiaohuan. Dynamic Task Allocation Method for UAVs Based on Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 63-71. |
| [4] | KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7-14. |
| [5] | YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27-31. |
| [6] | CHEN Si-yi, LUO Qiang, HUANG Hui-xian. Division Method of Coordinated Control Sub-areas Based on Group Decision Making Theory and Support Vector Machine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 18-25. |
| [7] | XU Lun-hui, LIAO Ran-kun. Signal Phasing-Sequence Optimization of Intersection Based on Traffic Track [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 5-9. |
| [8] | XU Lun-hui, LUO Qiang, FU Hui. Car-following Safe Distance Model Based on Braking Process of Leading Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 1-5. |
|