Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 1-15.doi: 10.16088/j.issn.1001-6600.2024070701

    Next Articles

Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater

WANG Shuying1,2, LU Yuxiang1,2*, DONG Shutong2, CHEN Mo2, KANG Bingya2, JIANG Zhanglan2, SU Chengyuan1,2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal Vniversity), Ministry of Education, Guilin Guangxi 541006, China;
    2. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-07-07 Revised:2024-08-30 Online:2024-12-30 Published:2024-12-30

Abstract: The widespread use of antibiotics is rapidly increasing the prevalence of antibiotic-resistant bacteria (ARB) and their associated antibiotic-resistant genes (ARGs), posing a significant environmental challenge and high health risk to the global population. Wastewater treatment plant (WWTP) effluents containing untreated antibiotics are key hotspots for the generation and spread of ARGs and ARBs, with serious consequences for human and animal health, as well as threats to ecological security. This paper reviews the occurrence and risk of ARGs in wastewater and enumerates the main pathways and potential impacts of ARGs transmission. Statistics on the reduction techniques of ARGs by bibliometric means are also presented to provide important insights for effective control of ARGs. In addition, treatment processes for removing ARGs from wastewater are critically discussed. Finally, the topical issues of ARGs prompted by composite pollution are summarized to provide future research directions and solutions for composite pollution.

Key words: antibiotics, antibiotic resistance genes (ARGs), wastewater treatment plants, propagation process, removal technologies, complex pollution

CLC Number:  X703.1
[1] LI T, WANG Z L, GUO J H, et al. Bacterial resistance to antibacterial agents: mechanisms, control strategies, and implications for global health[J]. Science of the Total Environment, 2023, 860: 160461. DOI: 10.1016/j.scitotenv.2022.160461.
[2] 梁任山,俸祥仁,刘婷婷,等.复合中药代替抗生素治疗猪气喘病的研究[J].广西师范大学学报(自然科学版),2013,31(3):209-212.DOI: 10.3969/j.issn.1001-6600.2013.03.033.
[3] WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China[J]. Journal of Hazardous Materials, 2020, 389: 122110. DOI: 10.1016/j.jhazmat.2020.122110.
[4] HOSSAIN A, NAKAMICHI S, HABIBULLAH-AL-MAMUN M, et al. Occurrence, distribution, ecological and resistance risks of antibiotics in surface water of finfish and shellfish aquaculture in Bangladesh[J]. Chemosphere, 2017, 188: 329-336. DOI: 10.1016/j.chemosphere.2017.08.152.
[5] MARTINEZ J L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria[J]. Proceedings of the Royal Society B, 2009, 276(1667): 2521-2530. DOI: 10.1098/rspb.2009.0320.
[6] YAN Q, ZHONG Z Z, LI X Y, et al. Characterization of heavy metal, antibiotic pollution, and their resistance genes in paddy with secondary municipal-treated wastewater irrigation[J]. Water Research, 2024, 252: 121208. DOI: 10.1016/j.watres.2024.121208.
[7] CHENG Y, LU J R, FU S S, et al. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics[J]. Environmental Pollution, 2022, 292(Part A): 118284. DOI: 10.1016/j.envpol.2021.118284.
[8] ZHU S Y, YANG B Q, WANG Z Q, et al. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115124. DOI: 10.1016/j.ecoenv.2023.115124.
[9] QIN K N, WEI L L, LI J J, et al. A review of ARGs in WWTPs: sources, stressors and elimination[J]. Chinese Chemical Letters, 2020, 31(10): 2603-2613. DOI: 10.1016/j.cclet.2020.04.057.
[10] WANG Y, HAN Y P, LI L, et al. Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: a review[J]. Environmental Pollution, 2022, 310: 119870. DOI: 10.1016/j.envpol.2022.119870.
[11] XIAO R H, HUANG D L, DU L, et al. Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855. DOI: 10.1016/j.scitotenv.2023.161855.
[12] WANG F, FU Y H, SHENG H J, et al. Antibiotic resistance in the soil ecosystem: a one health perspective[J]. Current Opinion in Environmental Science & Health, 2021, 20: 100230. DOI: 10.1016/j.coesh.2021.100230.
[13] LI S N, ONDON B S, HO S H, et al. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): new challenges for soil remediation and conservation[J]. Environmental Research, 2023, 219: 115132. DOI: 10.1016/j.envres.2022.115132.
[14] ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 2020, 187: 116455. DOI: 10.1016/j.watres.2020.116455.
[15] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental Research, 2019, 169: 483-493. DOI: 10.1016/j.envres. 2018.11.040.
[16] CHI T, ZHANG A G, ZHANG X F, et al. Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites[J]. Science of the Total Environment, 2020, 730: 139042. DOI: 10.1016/j.scitotenv.2020.139042.
[17] LI S N, ZHANG C F, LI F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review[J]. Journal of Hazardous Materials, 2021, 411: 125148. DOI: 10.1016/j.jhazmat. 2021.125148.
[18] LI W Y, ZHANG G S. Detection and various environmental factors of antibiotic resistance gene horizontal transfer[J]. Environmental Research, 2022, 212(Part B): 113267. DOI: 10.1016/j.envres.2022.113267.
[19] MORALEZ J, SZENKIEL K, HAMILTON K, et al. Quantitative analysis of horizontal gene transfer in complex systems[J]. Current Opinion in Microbiology, 2021, 62: 103-109. DOI: 10.1016/j.mib.2021.05.001.
[20] CORNO G, GHALY T, SABATINO R, et al. Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures[J]. Environmental Pollution, 2023, 316(Part 2): 120601. DOI: 10.1016/j.envpol.2022.120601.
[21] SUN X F, WANG X C, HAN Q, et al. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: evidence from universality, development and harmfulness[J]. Science of the Total Environment, 2024, 909: 168597. DOI: 10.1016/j.scitotenv.2023.168597.
[22] 洪铭媛,李清彪,邓旭.废水厌氧(水解):好氧生物组合处理工艺研究进展[J].化工环保,2005,25(2):104-109.DOI: 10.3969/j.issn.1006-1878.2005.02.007.
[23] WANG K M, ZHOU L X, MENG S H, et al. Anaerobic membrane bioreactor for real antibiotic pharmaceutical wastewater treatment: positive effect of fouling layer on antibiotics and antibiotic resistance genes removals[J]. Journal of Cleaner Production, 2023, 409: 137234. DOI: 10.1016/j.jclepro.2023.137234.
[24] ZHU Y J, WANG Y Y, ZHOU S, et al. Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants[J]. Water Research, 2018, 130: 139-150. DOI: 10.1016/j.watres.2017.11.067.
[25] KORZENIEWSKA E, HARNISZ M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria[J]. Science of the Total Environment, 2018, 639: 304-315. DOI: 10.1016/j.scitotenv.2018.05.165.
[26] 钱燕云,郑吉,徐莉柯,等.温度对厌氧环境下污泥中抗生素抗性基因行为特征的影响[J].生态毒理学报,2015,10(5):56-65.DOI: 10.7524/AJE.1673-5897.20151011001.
[27] 杨文静,邓钰莲,陈铸鑫,等.环丙沙星对厌氧反应器处理含磷废水效能及微生物群落响应的影响[J].广西师范大学学报(自然科学版),2023,41(6):158-168.DOI: 10.16088/j.issn.1001-6600.2022123001.
[28] 覃容华,宿程远,陆欣雅,等.Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J].广西师范大学学报(自然科学版),2023,41(3):242-254.DOI: 10.16088/j.issn.1001-6600.2022040403.
[29] YU Z H, ZHANG X B, NGO H H, et al. Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system[J]. Bioresource Technology, 2018, 268: 599-607. DOI: 10.1016/j.biortech.2018.08.028.
[30] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. DOI: 10.1016/j.chemosphere.2017.01.027.
[31] CHEN J, YING G G, WEI X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species[J]. Science of the Total Environment, 2016, 571: 974-982. DOI: 10.1016/j.scitotenv.2016.07.085.
[32] HUANG X, ZHENG J L, LIU C X, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal, 2017, 308: 692-699. DOI: 10.1016/j.cej.2016.09.110.
[33] ZHANG L, YAN C Z, WEN C, et al. Influencing factors of antibiotic resistance genes removal in constructed wetlands: a meta-analysis assisted by multivariate statistical methods[J]. Chemosphere, 2023, 315: 137755. DOI: 10.1016/j.chemosphere.2023.137755.
[34] BLANCO J A. Suitability of totora (Schoenoplectus californicus (C.A. Mey.) Soják) for its use in constructed wetlands in areas polluted with heavy metals[J]. Sustainability, 2019, 11(1): 19. DOI: 10.3390/su11010019.
[35] ZHANG L, YAN C Z, QI R, et al. Quantifying the contribution rates of sulfonamide antibiotics removal mechanisms in constructed wetlands using multivariate statistical analysis[J]. Environmental Pollution, 2022, 292(Part B): 118463. DOI: 10.1016/j.envpol.2021.118463.
[36] CUI E P, ZHOU Z C, GAO F, et al. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: a review[J]. Science of the Total Environment, 2023, 859(Part 1): 160257. DOI: 10.1016/j.scitotenv.2022.160257.
[37] YI X Z, TRAN N H, YIN T R, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research, 2017, 121: 46-60. DOI: 10.1016/j.watres. 2017.05.008.
[38] DAI M X, ZHANG Y J, WU Y M, et al. Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106193. DOI: 10.1016/j.jece.2021.106193.
[39] 尹理亚,丁开,杜文泽,等.金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J].广西师范大学学报(自然科学版),2024,42(1):9-17.DOI: 10.16088/j.issn.1001-6600.2023032702.
[40] DU L Q, AHMAD S, LIU L N, et al. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water[J]. Science of the Total Environment, 2023, 585(Part 2): 159815. DOI: 10.1016/j.scitotenv.2022.159815.
[41] SUN W, GU J, WANG X J, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater[J]. Bioresource Technology, 2018, 256: 342-349. DOI: 10.1016/j.biortech.2018.02.052.
[42] HU F Y, GAO C C, WANG B Y, et al. Effects of chicken manure-modified biochar on the adsorption capacity of tetracycline and abundance of antibiotic resistance genes in soil[J]. Land Degradation & Development, 2024, 35(3): 1224-1233. DOI: 10.1002/ldr.4983.
[43] YE M, SUN M M, FENG Y F, et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues[J]. Journal of Hazardous Materials, 2016, 309: 219-227. DOI: 10.1016/j.jhazmat.2015.10.074.
[44] LU X Y, HOU J, YANG K, et al. Binding force and site-determined desorption and fragmentation of antibiotic resistance genes from metallic nanomaterials[J]. Environmental Science & Technology, 2021, 55(13): 9305-9316. DOI: 10.1021/acs.est.1c02047.
[45] ZHANG Q R, ZHOU H X, JIANG P, et al. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria[J]. Journal of Hazardous Materials, 2024, 469: 133942. DOI: 10.1016/j.jhazmat.2024.133942.
[46] CUI E P, GAO F, LIU Y, et al. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: proceed with caution[J]. Environmental Pollution, 2018, 240: 475-484. DOI: 10.1016/j.envpol.2018.04.143.
[47] STANGE C, SIDHU J P S, TOZE S, et al. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3): 541-548. DOI: 10.1016/j.ijheh.2019.02.002.
[48] FOROUGHI M, KHIADANI M, KAKHKI S, et al. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review[J]. Science of the Total Environment, 2022, 811: 151404. DOI: 10.1016/j.scitotenv.2021.151404.
[49] BAGHAL ASGHARI F, DEHGHANI M H, DEHGHANZADEH R, et al. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater[J]. Scientific Reports, 2021, 11(1): 24519. DOI: 10.1038/s41598-021-04254-z.
[50] PING Q, YAN T T, WANG L, et al. Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: mechanism and comparison with conventional processes[J]. Water Research, 2022, 210: 118019. DOI: 10.1016/j.watres.2021.118019.
[51] GILCA A F, TEODOSIU C, FIORE S, et al. Emerging disinfection byproducts: a review on their occurrence and control in drinking water treatment processes[J]. Chemosphere, 2020, 259: 127476. DOI: 10.1016/j.chemosphere. 2020.127476.
[52] CAI Y W, SUN T, LI G Y, et al. Traditional and emerging water disinfection technologies challenging the control of antibiotic-resistant bacteria and antibiotic resistance genes[J]. ACS ES&T Engineering, 2021, 1(7): 1046-1064. DOI: 10.1021/acsestengg.1c00110.
[53] YE C S, FENG M B, CHEN Y Q, et al. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: a lagging response[J]. Water Research, 2022, 221: 118798. DOI: 10.1016/j.watres.2022.118798.
[54] DODD M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7): 1754-1771. DOI: 10.1039/c2em00006g.
[55] YANG Z H, SU R K, LUO S, et al. Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study[J]. Science of the Total Environment, 2017, 590-591: 751-760. DOI: 10.1016/j.scitotenv.2017.03.039.
[56] YANG J R, ZENG D Q, LI J, et al. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon[J]. Chemical Engineering Journal, 2021, 404: 126376. DOI: 10.1016/j.cej.2020.126376.
[57] SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks[J]. Science of the Total Environment, 2019, 669: 785-797. DOI: 10.1016/j.scitotenv.2019.03.162.
[58] DONG G H, CHEN B, LIU B, et al. Comparison of O3, UV/O3, and UV/O3/PS processes for marine oily wastewater treatment: degradation performance, toxicity evaluation, and flocs analysis[J]. Water Research, 2022, 226: 119234. DOI: 10.1016/j.watres.2022.119234.
[59] HERRAIZ-CARBONÉ M, COTILLAS S, LACASA E, et al. A review on disinfection technologies for controlling the antibiotic resistance spread[J]. Science of the Total Environment, 2021, 797: 149150. DOI: 10.1016/j.scitotenv.2021.149150.
[60] LI H N, ZHANG Z G, DUAN J T, et al. Electrochemical disinfection of secondary effluent from a wastewater treatment plant: removal efficiency of ARGs and variation of antibiotic resistance in surviving bacteria[J]. Chemical Engineering Journal, 2020, 392: 123674. DOI: 10.1016/j.cej.2019.123674.
[61] COSTA F C R, DOS SANTOS C R, AMARAL M C S. Trace organic contaminants removal by membrane distillation: a review on mechanisms, performance, applications, and challenges[J]. Chemical Engineering Journal, 2023, 464: 142461. DOI: 10.1016/j.cej.2023.142461.
[62] LIANG C Y, WEI D, ZHANG S Y, et al. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111885. DOI: 10.1016/j.ecoenv.2020.111885.
[63] ADAMS C, WANG Y, LOFTIN K, et al. Removal of antibiotics from surface and distilled water in conventional water treatment processes[J]. Journal of Environmental Engineering, 2002, 128(3): 253-260. DOI: 10.1061/(ASCE)0733-9372(2002)128:3(253).
[64] KOŠUTIĆ K, DOLAR D, AŠPERGER D, et al. Removal of antibiotics from a model wastewater by RO/NF membranes[J]. Separation and Purification Technology, 2007, 53(3): 244-249. DOI: 10.1016/j.seppur.2006.07.015.
[65] LI J H, QIU X, REN S J, et al. High performance electroactive ultrafiltration membrane for antibiotic resistance removal from wastewater effluent[J]. Journal of Membrane Science, 2023, 672: 121429. DOI: 10.1016/j.memsci.2023.121429.
[66] LI B, QIU Y, LI J, et al. Removal of antibiotic resistance genes in four full-scale membrane bioreactors[J]. Science of the Total Environment, 2019, 653: 112-119. DOI: 10.1016/j.scitotenv.2018.10.305.
[67] MICHAEL S G, MICHAEL-KORDATOU I, BERETSOU V G, et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B: Environmental, 2019, 244: 871-880. DOI: 10.1016/j.apcatb.2018.12.030.
[68] CHEN P P, YU X F, ZHANG J Y, et al. New and traditional methods for antibiotic resistance genes removal: constructed wetland technology and photocatalysis technology[J]. Frontiers in Microbiology, 2022, 13: 1110793. DOI: 10.3389/fmicb.2022.1110793.
[69] WANG J Y, HUO L X, BIAN K Q, et al. Efficacy and mechanism of antibiotic resistance gene degradation and cell membrane damage during ultraviolet advanced oxidation processes[J]. ACS ES&T Water, 2024, 4(6): 2746-2755. DOI: 10.1021/acsestwater.4c00350.
[70] CARUSO G. Microplastics as vectors of contaminants[J]. Marine Pollution Bulletin, 2019, 146: 921-924. DOI: 10.1016/j.marpolbul.2019.07.052.
[71] SYRANIDOU E, KALOGERAKIS N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs[J]. Science of the Total Environment, 2022, 804: 150141. DOI: 10.1016/j.scitotenv.2021.150141.
[72] ZHANG Y X, LU J, WU J, et al. Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109852. DOI: 10.1016/j.ecoenv.2019.109852.
[73] WANG S S, XUE N N, LI W F, et al. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 2020, 708: 134594. DOI: 10.1016/j.scitotenv. 2019.134594.
[74] SØRENSEN S J, BAILEY M, HANSEN L H, et al. Studying plasmid horizontal transfer in situ: a critical review[J]. Nature Reviews Microbiology, 2005, 3(9): 700-710. DOI: 10.1038/nrmicro1232.
[75] LI B, YANG Y, MA L P, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes[J]. The ISME Journal, 2015, 9(11): 2490-2502. DOI: 10.1038/ismej.2015.59.
[76] YANG Y Y, LIU G H, SONG W J, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes[J]. Environment International, 2019, 123: 79-86. DOI: 10.1016/j.envint.2018.11.061.
[77] PHAM D N, CLARK L, LI M Y. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge[J]. Journal of Hazardous Materials Letters, 2021, 2: 100014. DOI: 10.1016/j.hazl.2021.100014.
[78] LIU Q W, LI Y X, SUN Y N, et al. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor[J]. Science of the Total Environment, 2024, 906: 167544. DOI: 10.1016/j.scitotenv.2023.167544.
[79] ZHOU S, ZHU Y J, YAN Y, et al. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome[J]. Water Research, 2019, 161: 610-620. DOI: 10.1016/j.watres.2019.06.048.
[80] LUO T Y, DAI X H, CHEN Z J, et al. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow[J]. Water Research, 2023, 228(Part A): 119356. DOI: 10.1016/j.watres.2022.119356.
[81] DAI H H, GAO J F, WANG Z Q, et al. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 2020, 256: 120402. DOI: 10.1016/j.jclepro.2020.120402.
[82] ZHANG B, HE Y K, SHI W X, et al. Biotransformation of sulfamethoxazole (SMX) by aerobic granular sludge: removal performance, degradation mechanism and microbial response[J]. Science of the Total Environment, 2023, 858(Part 1): 159771. DOI: 10.1016/j.scitotenv.2022.159771.
[83] ROLSKY C, KELKAR V, DRIVER E, et al. Municipal sewage sludge as a source of microplastics in the environment[J]. Current Opinion in Environmental Science & Health, 2020, 14: 16-22. DOI: 10.1016/j.coesh.2019.12.001.
[84] LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169: 115229. DOI: 10.1016/j.watres.2019.115229.
[85] ZHANG Y, GU A Z, CEN T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237: 74-82. DOI: 10.1016/j.envpol.2018.01.032.
[86] SUN F L, XU Z T, FAN L L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge[J]. Journal of Environmental Management, 2021, 300: 113754. DOI: 10.1016/j.jenvman.2021.113754.
[87] WANG R, CHEN M X, FENG F, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion[J]. Bioresource Technology, 2017, 238: 57-69. DOI: 10.1016/j.biortech.2017.03.134.
[88] GUPTA S K, SHIN H, HAN D, et al. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant[J]. Journal of Microbiology, 2018, 56(6): 408-415. DOI: 10.1007/s12275-018-8195-z.
[89] KNAPP C W, MCCLUSKEY S M, SINGH B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11): e27300. DOI: 10.1371/journal.pone.0027300.
[90] ZHENG X L, ZHONG Z Z, XU Y, et al. Response of heavy-metal and antibiotic resistance genes and their related microbe in rice paddy irrigated with treated municipal wastewaters[J]. Science of the Total Environment, 2023, 896: 165249. DOI: 10.1016/j.scitotenv.2023.165249.
[91] ZHOU S, YANG F J, WANG W G, et al. Impact of Uranium on antibiotic resistance in activated sludge[J]. Science of the Total Environment, 2024, 917: 170369. DOI: 10.1016/j.scitotenv.2024.170369.
[92] WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Science of the Total Environment, 2020, 717: 137055. DOI: 10.1016/j.scitotenv. 2020.137055.
[93] ZHAO Q, GUO W Q, LUO H C, et al. Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: driven by functional modules and bacterial community[J]. Water Research, 2021, 205: 117672. DOI: 10.1016/j.watres.2021.117672.
[94] LIU C C, ZHU X Y, YOU L H, et al. Per/polyfluoroalkyl substances modulate plasmid transfer of antibiotic resistance genes: a balance between oxidative stress and energy support[J]. Water Research, 2023, 240: 120086. DOI: 10.1016/j.watres.2023.120086.
[95] CHEN C L, FANG Y P, CUI X C, et al. Effects of trace PFOA on microbial community and metabolisms: microbial selectivity, regulations and risks[J]. Water Research, 2022, 226: 119273. DOI: 10.1016/j.watres.2022.119273.
[96] CHEN C L, FANG Y P, ZHOU D D. Selective pressure of PFOA on microbial community: enrichment of denitrifiers harboring ARGs and the transfer of ferric-electrons[J]. Water Research, 2023, 233: 119813. DOI: 10.1016/j.watres.2023.119813.
[97] WANG J, WANG J, ZHAO Z L, et al. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community[J]. Environmental Pollution, 2017, 231(Part 1): 1145-1152. DOI: 10.1016/j.envpol.2017.07.067.
[98] LU H, WANG J J, HUANG L P, et al. Effect of immobilized anthraquinone-2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors[J]. Journal of Environmental Management, 2021, 282: 111967. DOI: 10.1016/j.jenvman.2021.111967.
[99] 梁佳怡,王泳森,段敏,等.生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J].广西师范大学学报(自然科学版),2021,39(6):1-12.DOI: 10.16088/j.issn.1001-6600.2021030502.
[100] XIE S Y, HAMID N, ZHANG T T, et al. Unraveling the nexus:microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture:a review[J]. Journal of Hazardous Materials, 2024, 471: 134324. DOI: 10.1016/j.jhazmat.2024.134324.
[101] WANG X M, LAN B R, FEI H X, et al. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils[J]. Journal of Hazardous Materials, 2021, 411: 124848. DOI: 10.1016/j.jhazmat.2020.124848.
[102] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: a combined study of experiment and molecular dynamics simulation[J]. Chemosphere, 2021, 265: 129133. DOI: 10.1016/j.chemosphere.2020.129133.
[103] TONG F, LIU D, ZHANG Z H, et al. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: insights into the role of complexation[J]. Environmental Research, 2023, 216(Part 3): 114716. DOI: 10.1016/j.envres.2022.114716.
[104] RAJPUT P, KUMAR P, PRIYA A K, et al. Nanomaterials and biochar mediated remediation of emerging contaminants[J]. Science of the Total Environment, 2024, 916: 170064. DOI: 10.1016/j.scitotenv.2024.170064.
[105] DAVE D, CHAUHAN K, KHIMANI A, et al. Photocatalytic degradation of low-density polythene using protein-coated titania nanoparticles and Lactobacillus plantarum[J]. Environmental Technology, 2023, 44(5): 619-630. DOI: 10.1080/09593330.2021.1980828.
[1] ZHENG Qing-si, LIN Mei-fang, TANG Huang. Synthesis of N-Methyl Moxifloxacin Hydrochloride and Its Application in Production [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 101-105.
[2] LIANG Ren-shan, FENG Xiang-ren, LIU Ting-ting, ZHANG Jie, SONG De-gui. Study on Compound Chinese Medicine Instead of Antibiotics in the Treatment of Swin Enzootic Pneumonia [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 209-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[4] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[5] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[6] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[7] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[8] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[9] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .
[10] DUAN Qinyu, XUE Guijun, TAN Quanwei, XIE Wenju. Improved BWO-TimesNet Short-term Heat Load Forecasting Model Based onSVMD[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 101 -116 .