Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 58-70.doi: 10.16088/j.issn.1001-6600.2021061505

Previous Articles     Next Articles

Modeling and Design of Low Power and High Precision Sigma-Delta Modulator

LIU Zhenyu, SONG Shuxiang*, CEN Mingcan, JIANG Pinqun, CAI Chaobo   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2021-06-15 Revised:2021-07-02 Published:2022-05-31

Abstract: In order to improve the accuracy of the Sigma-Delta modulator and reduce its power consumption, an improved second-order single-loop CIFF Sigma-Delta modulator is designed. The additional power consumption caused by the number of noise shaping filters is reduced by using op-amp sharing technology. The idea of floating coefficient iteration is applied to the modeling of the modulator in MATLAB, and the specific values of various parameters that meet the precision requirements are finally determined. Through the introduction of non-ideal factors, the obtained parameters are simulated and verified to meet the minimum performance index, and then the transistor level circuit is designed. The modulator has a signal bandwidth of 8 kHz and a sampling frequency of 4 MHz. The circuit design uses UMC 0.11 μm CMOS process, and the core circuit layout size is 226.8 μm×187.44 μm. The post-simulation results show that when the power supply voltage is 1.2 V, the total power consumption of the modulator is 290 μW. At -40-125 ℃, and the effective bits of each process Angle is more than 15 bits.

Key words: sigma-delta modulator, floating coefficient, matlab modeling, low power consumption, high-precision, voice chip

CLC Number: 

  • TN761
[1] 王盟皓, 侯训平, 陆铁军. 基于Matlab的宽带连续时间Sigma-Delta调制器设计[J]. 微电子学与计算机, 2020, 37(6): 70-74. DOI: 10.19304/j.cnki.issn1000-7180.2020.06.014.
[2] 王福强. 连续时间带通Sigma-Delta调制器的设计方法及实现技术研究[D]. 沈阳: 沈阳工业大学, 2020. DOI: 10.27322/d.cnki.gsgyu.2020.000623.
[3] BONIZZONI E, PEREZ A P, MALOBERTI F, et al. Two op-amps third-order sigma-delta modulator with 61-dB SNDR, 6-MHz bandwidth and 6-mW power consumption[J]. Analog Integrated Circuits and Signal Processing, 2011, 66(3): 381-388. DOI: 10.1007/s10470-010-9538-9.
[4] KWON C K, KIM H, PARK J, et al. A 0.4-mW, 4.7-ps resolution single-loop ΔΣ TDC using a half-delay time integrator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1184-1188. DOI: 10.1109/TVLSI. 2015. 2438851.
[5] 周志兴, 来强涛, 姜宇, 等. 一种应用于角度传感器的Sigma Delta ADC设计[J]. 微电子学与计算机, 2019, 36(8): 25-29. DOI: 10.19304/j.cnki.issn1000-7180.2019.08.006.
[6] SUNG G M, LEE C T, XIAO X, et al. 4th-order switched-current multistage-noise-shaping delta-sigma modulator with a simplified digital noise-cancellation circuit[J]. IEEE Access, 2020, 8: 168589-168600. DOI: 10.1109/ACCESS.2020.3023416.
[7] SUNG G M, GUNNAM L C, LIN W S, et al. A third-order multibit switched-current delta-sigma modulator with switched-capacitor flash ADC and IDWA[J]. IEICE Transactions on Electronics, 2017, E100.C(8): 684-693. DOI: 10.1587/transele.E100.C.684.
[8] LI D, QIAN X J, LI R Z, et al. High resolution ADC for ultrasound color doppler imaging based on MASH sigma-delta modulator[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(5): 1438-1449. DOI: 10.1109/TBME.2019.2938275.
[9] SCHREIER R, PAVAN S, TEMES G C. Understanding delta-sigma data converters [M]. 2nd ed. New York: IEEE, 2017. DOI: 10.1002/9781119258308.
[10] CHAO K C H, NADEEM S, LEE W L, et al. A higher order topology for interpolative modulators for oversampling A/D converters[J]. IEEE Transactions on Circuits and Systems, 1990, 37(3): 309-318. DOI: 10.1109/31.52724.
[11] SAFI-HARB M, ROBERTS G W. Low power delta-sigma modulator for ADSL applications in a low-voltage CMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(10): 2075-2089. DOI: 10.1109/TCSI.2005.852925.
[12] 王彬, 何光旭, 肖姿逸, 等. 一种高精度单环高阶Σ-Δ调制器[J]. 微电子学, 2017, 47(5): 644-647. DOI: 10.13911/j.cnki.1004-3365.2017.05.012.
[13] 李俊宏. 基于动态误差消除技术的Sigma-Delta调制器的研究与设计[D]. 成都: 西南交通大学, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000724.
[14] 胡云. 用于医疗电子的24位Sigma-delta调制器的研究与设计[D]. 西安: 西安电子科技大学, 2020. DOI: 10.27389/d.cnki.gxadu.2020.003237.
[15] NDJOUNTCHE T. Delta-sigma data converters[M]. Boca Raton: CRC Press, 2011. DOI: 10.1201/b10943-12.
[16] SCHREIER R, SILVA J, STEENSGAARD J, et al. Design-oriented estimation of thermal noise in switched-capacitor circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(11): 2358-2368. DOI: 10.1109/TCSI.2005.853909.
[17] LEE I, KIM B, LEE B G. A low-power incremental delta-sigma ADC for CMOS image sensors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(4): 371-375. DOI: 10.1109/TCSII.2015.2503706.
[18] FREITAS L M C, MORGADO-DIAS F. Reference power supply connection scheme for low-power CMOS image sensors based on incremental sigma-delta converters[J]. Electronics, 2021, 10(3): 299. DOI: 10.3390/electronics10030299.
[19] 谭晓强. 低功耗分时复用Delta-Sigma调制器[D]. 长沙: 国防科学技术大学, 2010.
[20] BANU M, KHOURY J M, TSIVIDIS Y. Fully differential operational amplifiers with accurate output balancing[J]. IEEE Journal of Solid-State Circuits, 1988, 23(6): 1410-1414. DOI: 10.1109/4.90039.
[21] BULT K, GEELEN G J G M. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain[J]. IEEE Journal of Solid-State Circuits, 1990, 25(6): 1379-1384. DOI: 10.1109/4.62165.
[22] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16. DOI: 10.16088/j.issn.1001-6600.2017.02.002.
[23] PATHAN A, MEMON T D. Sigma-delta modulation based single-bit adaptive DSP algorithms for efficient mobile communication[J]. Circuits, Systems, and Signal Processing, 2021, 40(4): 1788-1801. DOI: 10.1007/s00034-020-01553-0.
[24] 袁云, 李福杰, 赵野, 等. 一种可集成于电池组检测芯片的Sigma-Delta A/D转换器[J]. 微电子学与计算机, 2014, 31(11): 143-147. DOI: 10.19304/j.cnki.issn1000-7180.2014.11.031.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .