Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 242-250.doi: 10.16088/j.issn.1001-6600.2020110901

Previous Articles    

Effect of Dietary Branched-chain Amino Acid Ratio on Intestinal Flora of 28-63 Days Old Youxian Duck

SUN Yue1,2,3, DAI Qiuzhong2,4, JIANG Guitao2,4, HUANG Xuan2,4, LI Chuang2,4, DENG Ping2,4, SUN Tao1,3*   

  1. 1. College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Hunan Institute of Animal Science and Veterinary Medicine, Changsha Hunan 410131, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    4. Hunan Engineering Research Center of Poultry Production Safety, Changsha Hunan 410128, China
  • Received:2020-11-09 Revised:2021-04-02 Published:2022-05-31

Abstract: A single factor experiment was adopted to investigate the effects of dietary branched-chain Amino Acid ratio flora of 28-63 days old Youxian duck. 504 Youxian ducks of 28 day-old and healthy and similar in weight were randomly allocated to 6 groups with 6 replicates each group and 14 in each replicate. Six diets with leucine, valine and isoleucine ratios of 1∶0.4∶0.3 (group MA), 1∶0.5∶0.4 (group MB), 1∶0.6∶0.5 (group MC), 1∶0.7∶0.6(group MD), 1∶0.8∶0.7(group ME) and 1∶0.9∶0.8 (group MF) were avilable. The experiment lasted for 35 days. At the end of the feeding experiment, one duck was selected from each replicate of each treatment to collect cecal contents, and the cecal microbial structure and flora diversity were detected and analyzed by 16S rDNA sequencing technology. The results show that: 1) There are 344 identical OTUs in the 6 groups, and only one unique OTU existed in group MD. 2) At the phylum level, the core flora are Bacteroidetes, Firmicutes and Proteobacteria. At the genus level, Bacteroides and Desulfovibrio are the dominant genera; 3) The results of comparion among the 6 groups show that, the abundance of Proteobacteria in group MD is significantly higher than that in group ME (P<0.05), and the abundance of Actinomycetes in group MF is significantly higher than that in group MA (P<0.05); 4)There is no significant difference in Ace index and Chao1 index among the 6 groups, however, the Shannon index in group MF is significantly higher than that in group MC (P<0.05), and Simpson index in group MC is significantly higher than that in group MF (P<0.01) and significantly higher than that in group MA (P<0.05). In summary, the core flora of the cecum of 63-day-old Youxian duck is Bacteroides, Firmicutes, and Proteobacteria. The proportion of branched-chain amino acids in diets significantly affects the Proteobacteria and Actinomycetes. When the ratio of mleucine, valine and isoleucine is 1∶0.9∶0.8, the microbial species diversity of the cecum in Youxian duck is the highest.

Key words: branched-chain amino acid, Youxian duck, intestinal flora, species abundance, species diversity

CLC Number: 

  • S834
[1] 朱丽慧, 廖荣荣, 杨长锁. 肠道微生物对家禽肠道免疫功能的调节作用及其机制[J]. 动物营养学报, 2018, 30(3): 820-828. DOI: 10.3969/j.issn.1006-267x.2018.03.003.
[2] 卢明, 刘蔷, 刘婧, 等. 肠道微生物菌群分型的研究进展[J]. 中国微生态学杂志, 2020, 32(3): 345-351. DOI: 10.13381/j.cnki.cjm.202003023.
[3] 王珊珊, 王佳堃, 刘建新. 肠道微生物对宿主免疫系统的调节及其可能机制[J]. 动物营养学报, 2015, 27(2): 375-382. DOI: 10.3969/j.issn.1006-267x.2015.02.007.
[4] 杨利娜, 边高瑞, 朱伟云. 单胃动物肠道微生物菌群与肠道免疫功能的相互作用[J]. 微生物学报, 2014, 54(5): 480-486. DOI: 10.13343/j.cnki.wsxb.2014.05.002.
[5] SEKIROV I, RUSSELL S L, ANTUNES L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3): 859-904. DOI: 10.1152/physrev.00045.2009.
[6] 王文娟, 孙笑非, 孙冬岩, 等. 家禽肠道菌群多样性及其调控机制研究进展[J]. 饲料研究, 2015(5): 24-26, 68. DOI: 10.13557/j.cnki.issn1002-2813.2015.05.007.
[7] ZULKIFLI I, SHAKERI M, SOLEIMANI A F. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement[J]. Poultry Science, 2016, 95(12) : 2757-2763. DOI: 10.3382/ps/pew267.
[8] DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens[J]. Poultry Science, 2017, 96(10) : 3654-3663. DOI: 10.3382/ps/pex185.
[9] NIE C X, HE T, ZHANG W J, et al. Branched chain amino acids: beyond nutrition metabolism[J]. International Journal of Molecular Sciences, 2018, 19(4): 954. DOI: 10.3390/ijms19040954.
[10] SIDDIK M A B, SHIN A C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinology and Metabolism, 2019, 34(3): 234-246. DOI: 10.3803/EnM.2019.34.3.234.
[11] ADEVA-ANDANY M M, LÓOPEZ-MASIDE L, DONAPETRY-GARCÍA C, et al. Enzymes involved in branched-chain amino acid metabolism in humans[J]. Amino Acids, 2017, 49(6): 1005-1028. DOI: 10.1007/s00726-017-2412-7.
[12] NEINAST M, MURASHIGE D, ARANY Z, et al. Branched chain amino acids[J]. Annual Review of Physiology, 2019, 81(1): 139-164. DOI: 10.1146/annurev-physiol-020518-114455.
[13] LUO J B, FENG L, JIANG W D, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine[J]. Fish & Shellfish Immunology, 2014, 40(1): 197-207. DOI: 10.1016/j.fsi.2014.07.003.
[14] REN M, LIU C, ZENG X F, et al. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig[J]. Molecular Biology Reports, 2014, 41(6): 3611-3620. DOI: 10.1007/s11033-014-3225-3.
[15] CHANGY L, CAI H Y, LIU G H, et al. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers[J]. Animal Nutrition, 2015, 1(4): 313-319. DOI: 10.1016/j.aninu.2015.11.005.
[16] SUNY L, WU Z L, LI W, et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets[J]. Amino Acids, 2015, 47(8): 1517-1525. DOI: 10.1007/s00726-015-1985-2.
[17] YANG Z, HUANG S M, ZOU D Y, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice[J]. Amino Acids, 2016, 48(12): 2731-2745. DOI: 10.1007/s00726-016-2308-y.
[18] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. DOI: 10.1038/nature11234.
[19] WELDON L, ABOLINS S, LENZI L, et al. The gut microbiota of wild mice[J]. PLoS One, 2015, 10(8): e0134643. DOI: 10.1371/journal.pone.0134643.
[20] DURSO L M, HARHAY G P, SMITH T P L, et al. Animal-to-animal variation in fecal microbial diversity among beef cattle[J]. Applied and Environmental Microbiology, 2010, 76(14) : 4858-4862. DOI: 10.1128/AEM.00207-10.
[21] CHOI J H, KIM G B, CHA C J. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens[J]. Poultry Science, 2014, 93(8): 1942-1950. DOI: 10.3382/ps.2014-03974.
[22] DAI Z L, ZHANG J, WU G Y, et al. Utilization of amino acids by bacteria from the pig small intestine[J]. Amino Acids, 2010, 39(5): 1201-1215. DOI: 10.1007/s00726-010-0556-9.
[23] ZHANG S H, QIAO S Y, REN M, et al. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs[J]. Amino Acids, 2013, 45(5): 1191-1205. DOI: 10.1007/s00726-013-1577-y.
[24] DAI Z L, LI X L, XI P B, et al. Metabolism of select amino acids in bacteria from the pig small intestine[J]. Amino Acids, 2012, 42(5): 1597-1608. DOI: 10.1007/s00726-011-0846-x.
[25] YIN J, MA J, LI Y Y, et al. Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model[J]. Food & Function, 2020, 11(2): 1304-1311. DOI: 10.1039/c9fo01757g.
[26] ZHAO J, FENG L, LIU Y, et al. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile jian carp (Cyprinus carpio var. Jian) [J]. Fish & Shellfish Immunology, 2014, 41(2): 663-673. DOI: 10.1016/j.fsi.2014.10.002.
[1] SHI Rui-dan, WU Zhi-qiang, HUANG Liang-liang, FENG Wen-li, ZHU Zhao-jun, DING Yang, HU Yi-xiang. Fish Species Diversity of the Upper Xiangjiang River in North Guangxi Province [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 127-136.
[2] HOU Man-fu, SHEN Qing-geng, QIN Hai-ning. Species Diversity Characters of Original KarstForest Communitiesin Maolan,Guizhou,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 60-65.
[3] LI Gao-yan, HAN Song-lin, LIANG Shi-chu, WANYu-jian, WEN Quan-ying, HAN Yao-quan. Natural Fish Resources Investigation of Lijiang National AquaticGermplasm Resources Reserve for Spinibarbushollandi and Sinocyclocheilus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .