Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 206-215.doi: 10.16088/j.issn.1001-6600.2021060914

Previous Articles    

Research on China’s Grain Output Based on Interval Data Measurement

LI Chengen1, PAN Xiaoying1, WANG Meihan1, SHI Jianhua1,2,3,4*   

  1. 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou Fujian 363000, China;
    2. Fujian Key Laboratory of Granular Computing and Applications, Zhangzhou Fujian 363000, China;
    3. Fujian Key    Laboratory of Data Science and Statistics, Zhangzhou Fujian 363000, China;
    4. Institute of Meteorological Big Data-Digital Fujian, Zhangzhou Fujian 363000, China
  • Received:2021-06-09 Revised:2021-07-09 Online:2022-01-25 Published:2022-01-24

Abstract: Four modeling methods of interval data are used to explore the comprehensive impact of climate change and agricultural production input factors on China’s grain yield from 1993 to 2018. In addition, five evaluation indexes are used to measure the prediction accuracy of methods and the regression results are given and compared. The optimal regression method is applied to predict the change of grain yield in China. The results show that there are regional differences in grain yield in China, and the grain yield per unit area in some provinces changed greatly before 2009. But the grain yield per unit area of China’s eight provinces has tended to stable in the past tent years. Furthermore, climate change and agricultural production input factors have statistical significance in China’s grain yield. Finally, some suggestions are given to improve grain yield.

Key words: interval data, panel data, regression analysis, grain yield, climate change, agricultural production input factor

CLC Number: 

  • O212.4
[1] 尹朝静, 李谷成, 高雪. 气候变化对中国粮食产量的影响:基于省级面板数据的实证[J]. 干旱区资源与环境, 2016, 30(6): 89-94.
[2]赵茹欣, 王会肖, 董宇轩. 气候变化对关中地区粮食产量的影响及趋势分析[J]. 中国生态农业学报(中英文), 2020, 28(4): 467-479.
[3]黄凯, 邵金华, 黄旭升, 等. 近40年广西气候变化、灌溉与施肥对粮食作物产量的影响研究[J]. 中国农村水利水电, 2020(7): 129-135.
[4]BILLARD L, DIDAY E. Regression analysis for interval-valued data[M]. Data Analysis, Classification, and Related Methods. Berlin, Heidelberg: Springer, 2000: 369-374.
[5]BILLARD L, DIDAY E. Symbolic regression analysis[M]. Classification, Clustering, and Data Analysis. Berlin, Heidelberg: Springer, 2002: 281-288.
[6]LIMA NETO E D A, DE CARVALHO F D A T. Centre and range method for fitting a linear regression model to symbolic interval data[J]. Computational Statistics & Data Analysis, 2008, 52(3): 1500-1515.
[7]LIMA NETO E D A, DE CARVALHO F D A T. Constrained linear regression models for symbolic interval-valued variables[J]. Computational Statistics & Data Analysis, 2010, 54(2): 333-347.
[8]LIMA NETO E D A, DE CARVALHO F D A T. Nonlinear regression applied to interval-valued data[J]. Pattern Analysis and Applications, 2017, 20(3): 809-824.
[9]SOUZA L C, SOUZA R M C R, AMARAL G J A, et al. A parametrized approach for linear regression of interval data[J]. Knowledge-Based Systems, 2017, 131: 149-159.
[10]周文凯, 杨威. 基于区间型金融时间序列数据的宏观经济预测研究[J]. 经济问题, 2020,487(3): 35-41.
[11]KITCHENHAM B A, PICKARD L M, MACDONELL S G, et al. What accuracy statistics really measure[J]. IEE Proceedings-Software, 2001, 148(3): 81-85.
[12]HU C Y, HE L T. An application of interval methods to stock market forecasting[J]. Reliable Computing, 2007, 13(5): 423-434.
[13]HOJATI M, BECTOR C R, SMIMOU K. A simple method for computation of fuzzy linear regression[J]. European Journal of Operational Research, 2005, 166(1): 172-184.
[14]黄维, 邓祥征, 何书金, 等. 中国气候变化对县域粮食产量影响的计量经济分析[J]. 地理科学进展, 2010, 29(6): 677-683.
[15]张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008,45(5): 915-924.
[1] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42.
[2] YANG Xiangjun,YANG Shanchao. Applications and Tests of a Capital Asset Pricing Model in Chinese ShanghaiStock Market: Based on the Method of Industry Group [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 49-57.
[3] LI Jianhong, MENG Xinyuan, ZHAI Luxin, WANG Yue. Analysis of the Trend of Extreme Continuous Precipitation underClimate Change Condition in Guangxi,China, from 1951 to 2006 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .