Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 139-149.doi: 10.16088/j.issn.1001-6600.2021060906
Previous Articles Next Articles
LIU Yu, ZHOU Wen, LI Ni*
CLC Number:
[1] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249. [2]LU W B, LIANG Y. Empirical likelihood inference for linear transformation models[J]. Journal of Multivariate Analysis, 2006, 97(7): 1586-1599. [3]YU W, SUN Y T, ZHENG M. Empirical likelihood method for linear transformation models[J]. Annals of the Institute of Statistical Mathematics, 2011, 63(2): 331-346. [4]ZHAO Y C. Semiparametric inference for transformation models via empirical likelihood[J]. Journal of Multivariate Analysis, 2010, 101(8): 1846-1858. [5]JING B Y, YUAN J Q, ZHOU W.Empirical likelihood for non-degenerate U-statistics[J]. Statistics and Probability Letters, 2008, 78(6): 599-607. [6]WANG S J, QIAN L F, CARROL R J. Generalized empirical likelihood methods for analyzing longitudinal data[J]. Biometrika, 2010, 97(1): 79-93. [7]HU S, LIN L. Empirical likelihood analysis of longitudinal data involving within-subject correlation[J]. Acta Mathematicae Applicatae Sinica (English Series), 2012, 28(4): 731-744. [8]陈健, 赵培信. 部分线性模型的模态正交经验似然推断[J]. 应用数学, 2020, 33(1): 77-83. [9]刘彭, 张超, 柳平增. 变量有误差的半参数模型的经验似然推断[J]. 统计与决策, 2018, 34(13): 21-25. [10]方连娣. 核实数据下反映缺失非线性EV模型的经验似然推断[J]. 数学的实践与认识, 2019, 49(18): 199-208. [11]WANG R. Inferences on partial linear models with right censored data by empiricallikelihood[J]. Communications in Statistics-Theory and Methods, 2016, 45(21): 6342-6356. [12]QIN G S, JING B Y. Empirical likelihood for censored linear regression[J]. Scandinavian Journal of Statistics, 2001, 28(4): 661-673. [13]WANG Q H, JING B Y. Empirical likelihood for a class of functionals of survival distribution with censored data[J]. Annals of the Institute of Statistical Mathematics, 2001, 53(3): 517-527. [14]陈博文, 赵培信, 唐新蓉, 等. 线性混合效应模型的有效稳健经验似然推断[J]. 应用数学, 2020, 33(4): 886-893. [15]李纯净, 李芸, 王庆杰, 等. 区间删失数据下部分线性模型的经验似然统计推断[J]. 统计与决策, 2021, 37(3): 50-53. [16]ZHANG Z G, ZHAO Y C. Empirical likelihood for linear transformation models with interval-censored failure time data[J]. Journal of Multivariate Analysis, 2013, 116(2):398-409. [17]曾小凤, 陈传钟, 李霓. 含治愈个体的复发事件下半参数比率模型[J]. 应用概率统计, 2015, 31(5): 514-526. [18]ZHAO Y C. Empirical likelihood inference for the accelerated failure time model[J]. Statistics and Probability Letters, 2011, 81(5): 603-610. [19]BYAR D P. The veterans administration study of chemoprophylaxis for recurrent stage I bladder tumours: comparisons of placebo, pyridoxine and topical thiotepa[M]//PAVONE-MACALUSO M, SMITH P H, EDSMYR F. Bladder tumor and other topics in urological oncology. Boston: Springer, 1980: 363-370. [20]OWEN A B. Empirical likelihood[M]. Boca Raton: Chapman and Hall/CRC, 2001. [21]OWEN A B. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1): 90-120. |
[1] | ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42. |
[2] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[3] | QIN Yong-song, YANG Cui-lian. Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 22-29. |
|