Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 54-62.doi: 10.16088/j.issn.1001-6600.2020100402

Previous Articles     Next Articles

Research on Full Coverage Path Planning Algorithm of Sweeping Robot Based on Divide and Conquer

XU Lunhui*, LIN Shicheng   

  1. School of Civil and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China
  • Received:2020-10-04 Revised:2020-11-10 Online:2021-11-25 Published:2021-12-08

Abstract: Most of the sweeping robots have the problems of high repetition rate and low coverage rate. When planning the full coverage path and encountering dense and scattered obstacle areas, the route planning is messy and even can’t be covered. Therefore, this paper designs a full coverage path planning algorithm based on divide and conquer idea. By constructing a number of line segments on the map, the local path segments are connected according to the principle of minimum Manhattan distance between the endpoints of line segments to form a number of arcuate circuit blocks. Then, divide and conquer algorithm is used to realize the global matching of the nearest end points of each bow block and connect them. A full coverage route with uniform path is generated. Compared with the cow tillage unit decomposition combined with bio inspired neural network coverage algorithm, the analysis shows that in the dense and scattered obstacle areas, the algorithm can plan a neat and smooth passable path, the coverage rate can reach 91.3%, the repetition rate is reduced by 39.3%, and the time cost is reduced by 28.1%.

Key words: full coverage path planning, manhattan distance, divide and conquer algorithm, line sequence, sweeping robot

CLC Number: 

  • TP242
[1] 高亚男. 清洁机器人全覆盖导航技术研究[D]. 济南:山东大学,2016.
[2] 马云飞. 移动机器人全覆盖路径规划与自主导航算法研究[D]. 北京:北京邮电大学,2019.
[3] 任云天. 扫地机器人避障全覆盖路径规划算法的研究与设计[D]. 武汉:华中科技大学,2019.
[4] 王鼎新. 基于改进Q-learning算法的AGV路径规划[J]. 电子设计工程,2021, 29(4):7-10, 15.
[5] 周林娜,汪芸,张鑫,等. 矿区废弃地移动机器人全覆盖路径规划[J].工程科学学报,2020,42(9):1220-1228. DOI:10.13374/j.issn2095-9389.2019.09.09.004.
[6] 李楷,陈永府,金志勇,等.基于回溯法的全覆盖路径规划算法[J]. 计算机工程与科学,2019,41(7):1227-1235. DOI:10.3969/j.issn.1007-130X.2019.07.012.
[7] 刘晶,姚维,章玮. 移动机器人全覆盖路径规划算法研究[J]. 工业控制计算机,2019,32(12):52-54.
[8] 赵慧南,刘淑华,吴富章,等. 基于二分搜索的牛耕式全覆盖规划算法研究[J]. 计算机工程与应用,2011,47(23):51-53,60. DOI:10.3778/j.issn.1002-8331.2011.23.015.
[9] ŠELEK A,SEDER M,PETROVIĆ I. Mobile robot navigation for complete coverage of an environment[J]. IFAC-PapersOnLine,2018,51(22):512-517. DOI:10.1016/j.ifacol.2018.11.582.
[10] LIU H,MA J Y,HUANG W B. Sensor-based complete coverage path planning in dynamic environment for cleaning robot[J]. CAAI Transactions on Intelligence Technology,2018,3(1):65-72. DOI:10.1049/trit.2018.0009.
[11] LE A V,NHAN N H K,MOHAN R E. Evolutionary algorithm-based complete coverage path planning for tetriamond tiling robots[J]. Sensors,2020,20(2):445. DOI:10.3390/s20020445.
[12] KHAN A,NOREEN I,TYU H,et al. Online complete coverage path planning using two-way proximity search[J]. Intelligent Service Robotics,2017,10(3):229-240. DOI:10.1007/s11370-017-0223-z.
[13] SANDAMURTHY K,RAMANUJAM K. A hybrid weed optimized coverage path planning technique for autonomous harvesting in cashew orchards[J]. Information Processing in Agriculture,2020,7(1):152-164. DOI:10.1016/j.inpa.2019.04.002.
[14] 张丹红,陈文文,张华军,等. A*算法与蚁群算法相结合的无人艇巡逻路径规划[J]. 华中科技大学学报(自然科学版),2020,48(6):13-18. DOI:10.13245/j.hust.200603.
[15] 宁洪斌,祝俊伟,邓小飞,等. 移动机器人滑模路径的跟踪控制[J]. 吉首大学学报(自然科学版),2020,41(1):30-34. DOI:10.13438/j.cnki.jdzk.2020.01.006.
[16] 周玉林,熊鹏荣,朱洪. 求平面点集最近点对的一个改进算法[J]. 计算机研究与发展,1998,35(10):956-960.
[17] 杜聪,张喆,李温静,等. 基于狄利克雷分布的可信路由转发机制[J]. 北京邮电大学学报,2020,43(1):74-79. DOI:10.13190/j.jbupt.2019-089.
[18] 姜春茂,张国印. 使用动态矩形窗求最近点对的几何算法[J]. 哈尔滨工程大学学报,2013,34(3):350-357.DOI:10.3969/j.Issn.1006-7043.201204044.
[19] 蔡火荣. 基于分治策略的物流在途时间预测模型研究[D].杭州:浙江理工大学,2017.
[20] 王洪斌,尹鹏衡,郑维,等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人,2020,42(3):346-353. DOI:10.13973/j.cnki.robot.190305.
[21] 许伦辉,刘景柠,朱群强,等. 自动引导车路径偏差的控制研究[J].广西师范大学学报(自然科学版),2015,33(1):1-6. DOI:10.16088/j.issn.1001-6600.2015.01.001.
[22] HESS W ,KOHLER D ,RAPP H ,et al. Real-time loop closure in 2D LIDAR SLAM[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway,NJ:IEEE,2016:1271-1278. DOI:10.1109/ICRA.2016.7487258.
[23] 马小陆,梅宏.基于JPS策略的ACS移动机器人全局路径规划[J]. 机器人,2020,42(4):494-502.DOI:10.13973/j.cnki.robot.190463.
[24] 王耀南,潘琪,陈彦杰. 改进型生物激励神经网络的路径规划方法[J]. 控制工程,2018,25(4):541-548. DOI:10.14107/j.cnki.kzgc.151019.
[25] LAKSHMANAN A K,MOHAN R E,RAMALINGAM B,et al. Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot[J]. Automation in Construction,2020,112:103078. DOI:10.1016/j.autcon.2020.103078.
[1] CHEN Linqi, LI Tinghui. ADRC Controller Optimization Design Based on Two-space PSO Algorithm for Quad-rotor UAV [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 42-49.
[2] XIE Xiaohui, SUN Lining, ZHANG Fengfeng. Event Based Robot Hybrid Acitive-Passive Force-Position Control Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .