Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 119-129.doi: 10.16088/j.issn.1001-6600.2021040801
Previous Articles Next Articles
YAO Jinyang, HU Ying, WANG Jinhua*
CLC Number:
[1] DEZA M, VANSTONE S A. Bounds for permutation arrays[J]. Journal of Statistical Planning and Inference, 1978, 2(2): 197-209. [2] ETZION T. Optimal doubly constant weight codes[J]. Journal of Combinatorial Designs, 2008, 16(2): 137-151. [3] CHEE Y M, KIAH H M, ZHANG H, et al. Constructions of optimal and near optimal multiply constant-weight codes[J]. IEEE Transactions on Information Theory, 2017, 63(6): 3621-3629. [4] WANG C Y, CHANG Y X, FENG T. Optimal multiply constant-weight codes from generalized Howell designs[J]. Graphs and Combinatorics, 2019, 35(3): 611-632. [5] WANG C Y, CHANG Y X, FENG T. The asymptotic existence of frames with a pair of orthogonal frame resolutions[J]. Science China Mathematics, 2019, 62(9):1839-1850. [6] COLBOURN C J, DINITZ J H. The CRC Handbook of combinatorial designs[M]. 2nd ed. Boca Raton, FL:Chapman & Hall/CRC Press, 2007. [7] MULLIN R C, WALLIS W D. The existence of Room squares[J]. Aequationes Mathematicae, 1975, 13(1/2): 1-7. [8] STINSON D R. The existence of Howell designs of odd side[J]. Journal of Combinatorial Theory (Series A), 1982, 32(1): 53-65. [9] ANDERSON B A, SCHELLENBERG P J, STINSON D R: The existence of Howell designs of even side[J]. Journal of Combinatorial Theory (Series A), 1984, 36(1): 23-55. [10] ABEL R J R, BAILEY R F, BURGESS A C, et al. On generalized Howell designs with block size three[J]. Designs, Codes and Cryptography, 2016, 81(2): 365-391. [11] WANG C Y, DU B L. Existence of generalized Howell designs of side n+1 and order 3n[J].Utilitas Mathematica, 2009, 80: 143-159. [12] 王长远,冯弢. 每行(列)含2个空位的广义Howell设计[J]. 北京交通大学学报,2016, 40(3):120-128. [13] COLBOURN C J, LAMKEN E R, LING A C H, et al. The existence of Kirkman squares-doubly resolvable (v,3,1)-BIBDs[J]. Designs, Codes and Cryptography, 2002, 26(1/2/3): 169-196. [14] MATHON R, VANSTONE S A. On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays[J]. Discrete Mathematics, 1980, 30(2): 157-172. [15] ABEL R J R, LAMKEN E R, WANG J. A few more Kirkman squares and doubly near resolvable BIBDs with block size 3[J]. Discrete Mathematics, 2008, 308(7): 1102-1123. [16] ABEL R J R, CHAN N, COLBOURN C J, et al. Doubly resolvable nearly Kirkman triple systems[J]. Journal of Combinatorial Designs, 2013, 21(8): 342-358. [17] KOTZIG A, ROSA A. Nearly Kirkman systems[J]. Congressus Numerantium, 1974, 10: 607-614. [18] SMITH P. A doubly divisible nearly Kirkman system[J]. Discrete Mathematics, 1977, 18(1): 93-96. [19] COLBOURN C J , HORSLEY D, WANG C. Colouring triples in every way: A conjecture[J]. Quaderni di Matematica, 2012, 28: 257-286. [20] DU J, ABEL R J R, WANG J H. Some new resolvable GDDs with k=4 and doubly resolvable GDDs with k=3[J]. Discrete Mathematics, 2015, 338(11): 2015-2118. [21] ABEL R J R, BENNETT F E, GE G. The existence of four HMOLS with equal sized holes[J]. Designs, Codes and Cryptography, 2002, 26: 7-31. [22] BENNETT F E, COLBOURN C J, ZHU L. Existence of three HMOLS of types hn and 2n31 [J]. Discrete Mathematics, 1996, 160(1/3): 49-65. [23] ABEL R J R. Existence of five MOLS of orders 18 and 60[J]. Journal of Combinatorial Designs, 2015, 23(4): 135-139. [24] TODOROV D T. Four mutually orthogonal Latin squares of order 14[J]. Journal of Combinatorial Designs, 2012, 20(8): 363-367. [25] CHERIF Z, DANGER J L, GUILLEY S, et al. Multiply constant weight codes[C]//2013 IEEE International Symposium on Information Theory, Piscataway NJ: IEEE Press, 2013: 306-310. [26] CHEE Y M, CHERIF Z, DANGER J L, et al. Multiply constant-weight codes and the reliability of loop physically unclonable functions[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7026-7034. [27] WANG X, WEI H J, SHANGGUAN C, et al. New bounds and constructions for multiply constant-weight codes[J]. IEEE Transactions on Information Theory, 2016, 62(11): 6315-6327. |
[1] | YANG Yang, YU Huangsheng,WU Dianhua. Bound and Construction for Optimal (n,{3,4,5},(2,3,1),1,Q)-OOCs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 58-62. |
[2] | WANG Yongzhen, YU Huangsheng, WU Dianhua. Construction of (6×v,{3,4},1,Q)-OOCs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 62-67. |
[3] | WU Dian-hua, TONG Jia. Constructions of Optimal (v,{3,4,5,6},1,Q)-OOCs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 1-6. |
[4] | YU Huang-sheng, WU Dian-hua. A New Class of Optimal Variable-Weight OOCs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 79-83. |
[5] | ZHANG Yufang, YU Huangsheng. Optimal Variable-Weight OOCs with Weight Set {3,4,7} [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 78-83. |
|