Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (5): 64-70.doi: 10.16088/j.issn.1001-6600.2020.05.008
Previous Articles Next Articles
ZHENG Tao, ZHOU Xinran, ZHANG Long*
CLC Number:
[1] 陈兰荪.数学生态学模型与研究方法:第2版[M].北京:学科出版社,2017. [2] 陈凤德,谢向东.合作种群模型动力学研究[M].北京:科学出版社,2014. [3] 吴丹阳,柏灵.三种群非自治扩散系统的概周期解[J].吉林师范大学学报(自然科学版),2003(1):35-41. [4] 程荣福,李辉.具有Holling III型功能性反应的捕食者与被捕食者收获模型的分支与极限环[J].东北师大学报(自然科学版),2007,39(1):17-21. [5] 李辉,王艺菲.具有功能性反应的时滞扩散模型的周期解与稳定性[J].东北师大学报(自然科学版),2008,40(2):22-29. [6] 刘潇.一个具有竞争关系的Lotka-Volterra模型全局结构分析[J].生物数学学报,2009,24(4):702-710. [7] HARTMAN P.Ordinary differential equations[M].New York: Wiley & Sons,1964. [8] 黑力军,陈斯养.具有时滞三斑块扩散捕食模型的全局稳定性[J].工程数学学报,2003,20(4):129-133. [9] MUHAMMADHAJI A,REHIM M,TENG Z D.Boundedness on the two-species stochastic predator-prey system[J].Journal of Xinjiang University(Natural Science Edition),2013,30(3):310-312. [10] SUGIE J,KIRA K.Uniform global asymptotic stability for oscillators with superlinear damping[J].Journal of Mathmatical Analysis and Applications,2015,425(2):827-853. [11] 苗新艳,张龙.一类交替变化的竞争-合作混杂种群模型研究[J].广西师范大学学报(自然科学版),2018,36(3):25-31. [12] IGNAT’EV A O.On glabal asymptotic stability of the equilibrium of predator-prey system in varying environment[J].Russian Mathematics,2017,61(4):5-10. [13] MA M J,OU C H.Existence,uniqueness,stability and bifurcation of periodic patterns for a seasonal single phytoplankton model with sell-shading effect[J].Journal of Differential Equations,2017,263(9):5630-5655. |
[1] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[2] | HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 44-47. |
|