Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (5): 48-55.doi: 10.16088/j.issn.1001-6600.2020.05.006
Previous Articles Next Articles
SUN Yuqing, LU Jiakuan*
CLC Number:
[1] 庞琳娜,邱燕燕,卢家宽.p-幂零群的若干充分条件[J].广西师范大学学报(自然科学版),2014, 32(2): 64-66. DOI: 10.3969/j.issn.1001-6600.2014.02.011. [2] MAHMOUD H, ZOHREH M. On groups whose self-centralizing subgroups are normal[J]. Journal of Algebra and Its Applications, 2019, 18(6):1950106. DOI: 10.1142/S0219498819501068. [3] AIVAZIDIS S, ISAACS I M. Large abelian normal subgroups[J]. Archiv Der Mathematik, 2018, 111(2): 113-122. DOI: 10.1007/s00013-018-1192-y. [4] BELONOGOV V A. Finite groups with three classes of maximal subgroups[J]. Mathematics of the USSR-Sbornik, 1988, 59(1): 223-236. DOI: 10.1070/SM1988v059n01ABEH003132. [5] 周志浩,郭秀云.非交换子群共轭类个数为2的有限群[J].上海大学学报(自然科学版), 2012, 18(1): 35-39. DOI: 10.3969/j.issn.1007-2861.2012.01.007. [6] 钟祥贵,丁锐芳,凌思敏.非次正规子群共轭类数对有限群结构的影响[J].广西师范大学学报(自然科学版),2017, 35(1): 44-48. DOI: 10.16088/j.issn.1001-6600.2017.01.007. [7] LU J K, MENG W. On solvability of finite groups with few non-normal subgroups[J]. Communications in Algebra, 2015, 43(5): 1752-1756. DOI: 10.1080/00927872.2013.879160. [8] 卢家宽,刘雪霞,覃雪清.关于Frobenius群的注记[J].广西师范大学学报(自然科学版), 2018, 36(1): 84-87. DOI: 10.16088/j.issn.1001-6600.2018.01.011. [9] 史江涛,张翠.非平凡循环子群共轭类类数较小的有限非可解群[J].广西师范大学学报(自然科学版),2014, 32(3): 52-56. DOI: 10.3969/j.issn.1001-6600.2014.03.009. [10] WANG Y M. C-normality and solvability of groups[J]. Journal of Pure Applied Algebra, 1996, 110(3): 315-320. DOI: 10.1016/0022-4049(94)00090-5. [11] 李才恒,王燕鸣,谢浊清,等.每个子群都c-正规的有限群[J].中国科学:数学,2013, 43(1): 25-32. DOI: 10.1360/012012-123. [12] 唐峰.所有极大子群皆交换或正规的有限群[J].常熟理工学院学报(自然科学版),2007, 21(8): 8-10. DOI: 10.16101/j.cnki.cn32-1749/z.2007.08.004. [13] 徐明曜.有限群导引:上册[M].北京:科学出版社,1987. [14] BALLESTER-BOLINCHES A, WANG Y M, GUO X Y. C-supplemented subgroups of finite groups[J]. Glasgow Mathematical Journal, 2000, 42(3): 383-389. [15] 徐明曜,黄建华,李慧陵,等.有限群导引:下册[M].北京:科学出版社,1999. [16] 张勤海,安立坚.有限p-群构造:上册[M].北京:科学出版社,2017. [17] 江燕.只有两个极大子群共轭类的群[J].东莞理工学院学报,1994, 1(2): 50-51. [18] AN L J, QU H P, XU M Y, et al. Quasi-NC groups[J]. Communications in Algebra, 2008, 36(11): 4011-4019. DOI: 10.1080/00927870802174496. [19] KURZWEIL H, STELLMACHER B. The theory of finite groups[M]. New York: Springer, 2004. [20] MILLER G A, MORENO H C. Non-abelian groups in which every subgroup is abelian[J]. Transactions of the American Mathematical Society, 1903, 4(4): 398-404. DOI: 10.2307/1986409. |
[1] | WU Xianghua, ZHONG Xianggui. Influence of NS*-permutable Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 42-47. |
[2] | LU Jiakuan,LIU Xuexia,QIN Xueqing. Notes on Frobenius Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 84-87. |
[3] | ZHONG Xianggui, DING Ruifang, LING Simin. Influence of the Number of Conjugacy Classes of Nonsubnormal Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 44-48. |
[4] | PANG Lin-na, QIU Yan-yan, LU Jia-kuan. On Some Sufficent Conditions of p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 64-66. |
[5] | ZHONG Xiang-gui, LIAO Shu-hua, LI Ming-hua, TAN Chun-gui, CHEN Xiao-xiang. Maximal Supersolvable Subgroups and Supersolubility of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 44-47. |
[6] | LIANG Deng-feng, YU Xin-yan, QIN Le-yang. Sovable Groups with Irreducible Character Degrees Graphs Having a Kind of Connected Components [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 21-25. |
[7] | LU Jia-kuan, MENG Wei. On π-quasinormal Subgroup of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 35-37. |
|