Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 142-148.doi: 10.16088/j.issn.1001-6600.2019.01.016
Previous Articles Next Articles
LIN Yue1,2,LIU Tingzhang2*,WANG Zhehe1
CLC Number:
[1] 陈潭.大数据战略实施的实践逻辑与行动框架[J].中共中央党校学报,2017,21(2):19-26.DOI:10.14119/j.cnki.zgxb.2017.02.003. [2] 郭毅可.走好我们的大数据之路[J].上海大学学报(自然科学版),2016,22(1):1-2.DOI:10.3969/j.issn.1007-2861.2015. 05.016. [3] 宫夏屹,李伯虎,柴旭东,等.大数据平台技术综述[J].系统仿真学报,2014,26(3):489-496.DOI:10.16182/j.cnki.joss. 2014.03.039. [4] EFRON B,TIBSHIRANI R J. An introduction to the bootstrap[M]. New York: Chapmen and Hall, 1993. [5] TSAI T I, LI D C. Utilize bootstrap in small data set learning for pilot run modeling of manufacturing systems[J]. Expert Systems with Applications,2008,35(3):1293-1300.DOI:10.1016/j.eswa.2007.08.043. [6] HUANG Chongfu,MORAGA C.A diffusion-neural-network for learning from small samples[J].International Journal of Approximate Reasoning,2004,35(2):137-161.DOI:10.1016/j.ijar.2003.06.001. [7] LI D C,WU C S,CHANG F M.Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy[J].The International Journal of Advanced Manufacturing Technology,2005,27(3/4):321-328.DOI: 10.1007/s00170-003-2184-y. [8] LI D C, WU C S,TSAI T I,et al.Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J].Computers and Operations Research,2007,34(4):966-982.DOI: 10.1016/j.cor.2005.05.019. [9] LIN Y S,LI D C.The generalized-trend-diffusion modeling algorithm for small data sets in the early stages of manufacturing systems[J].European Journal of Operational Research,2010,207(1):121-130.DOI:10.1016/j.ejor.2010.03. 026. [10] LI D C,CHEN C C,CHANG C J,et al.A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems[J].Expert Systems with Applications,2012,39(1):1557-1581.DOI:10.1016/j.eswa. 2011.08.071. [11] 朱宝,陈忠圣,余乐安.一种新颖的小样本整体趋势扩散技术[J].化工学报,2016,67(3):820-826.DOI:10.11949/j.issn. 0438-1157.20151921. [12] CHEN Zhongsheng,ZHU Bao,HE Yanlin, et al.A PSO based virtual sample generation method for small sample sets:applications to regression datasets[J].Engineering Applications of Artificial Intelligence,2017,59:236-243.DOI:10. 1016/j.engappai.2016.12.024. [13] YANG Jing,YU Xu,XIE Zhiqiang,et al.A novel virtual sample generation method based on Gaussian distribution[J]. Knowledge-Based Systems,2011,24(6):740-748.DOI:10.1016/j.knosys.2010.12.010. [14] 徐中民,张志强,程国栋,等.运用信息熵理论研究条件估值调查中的抽样问题[J].系统工程理论与实践,2003(3):129-134.DOI:10.3321/j.issn:1000-6788.2003.03.023. [15] 林耀三,张延全,张哲荣,等.虚拟样本合适性筛选机制[C]//第25届全国灰色系统会议论文集.北京:中国高等科学技术中心,2014:372-379. [16] 王松桂,张忠占,程维虎,等.概率论与数理统计[M].北京:科学出版社,2004:120-127. |
[1] | ZHANG Yongsheng, ZHU Wenjun, SHI Ruoqi, DU Zhenhua, ZHANG Rui, WANG Zhi. A Confidence-guided Hybrid Android Malware DetectionSystem with Multiple Heterogeneous Algorithms [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 19-28. |
[2] | XU Li, DING Shi-fei, GUO Feng-feng. A Rough Kernel Clustering Algorithm Based on ImprovedAttribute Reduction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 105-109. |
[3] | ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119-124. |
|