Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (3): 74-85.doi: 10.16088/j.issn.1001-6600.2016.03.011

Previous Articles     Next Articles

Pricing of Interest Rate Derivatives Based on Affine Jump Diffusion Model

WANG Jiaqin, DENG Guohe   

  1. School of Mathematics and Statistics,Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2016-03-01 Online:2016-09-30 Published:2018-09-17

Abstract: The pricing of interest rate derivatives is considered under an affine jump diffusion model. Using the Fourier transform method and the forward measure change technique,the closed explicit formulas for both the price of the default-free,zero-coupon bond and the value of the European options on the default-free,zero-coupon bond are obtained. Furthermore,pricing problems on both the European option on the coupon bond and the interest rate options are extended in this model by applying these explicit formulas above. Finally,the impacts of the key parameters in this model on prices for both the bond and bond option,and implied volatilities of bond options are analyzed by numerical examples,respectively. Numerical results show that the jump risks have more remarkable effects on the interest rate derivative prices and implied volatility,which show that the affine jump diffusion term structure model of the interest rate fits reality well.

Key words: affine jump diffusion model, term structure of interest rate, bond options, Fourier transform, implied volatility.

CLC Number: 

  • O211.9
[1] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics,1977,5(2): 177-188. DOI:10.1016/0304-405X(77)90016-2.
[2] COX J C,INGERSOLL J E,ROSS S A. A theory of the term structure of interest rates[J]. Econometrica,1985,53(2): 385-407. DOI:10.2307/1911242.
[3] BRENNAN M J,SCHWARTZ E S. A continuous time approach to the pricing of bonds[J]. Journal of Banking and Finance,1979,3(2): 133-155. DOI:10.1016/0378-4266(79)90011-6.
[4] HULL J,WHITE A. Pricing interest-rate-derivative securities[J]. The Review of Financial Studies,1990,3(4): 573-592. DOI:10.1093/rfs/3.4.573.
[5] HEATH D,JARROW R,MORTON A. Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation[J]. Econometrica,1992,60(1): 77-105. DOI:10.2307/2951677.
[6] CHEN R R,SCOTT L. Pricing interest rate options in a two-factor Cox-Ingersoll-Ross model of the term structure[J]. The Review of Financial Studies,1992,5(4): 613-636. DOI:10.1093/rfs/5.4.613.
[7] BANSAL R,ZHOU Hao. Term structure of interest rates with regime shifts[J]. The Journal of Finance,2002,57(5): 1997-2043. DOI:10.1111/0022-1082.00487.
[8] DUFFIE D,KAN R. A yield-factor model of interest rates[J]. Mathematical Finance,1996,6(4): 379-406. DOI:10.1111/j.1467-9965.1996.tb00123.x.
[9] HAMILTON J D. Rational-expectations econometric analysis of changes in regime: an investigation of the term structure of interest rates[J]. Journal of Economic Dynamics and Control,1988,12(2/3): 385-423. DOI:10.1016/0165-1889(88)90047-4.
[10] DAS S R. The surprise element: jumps in interest rates[J]. Journal of Econometrics,2002,106(1): 27-65. DOI:10.1016/S0304-4076(01)00085-9.
[11] JOHANNES M. The statistical and economic role of jumps in continuous-time interest rate models[J]. The Journal of Finance,2004,59(1): 227-260. DOI:10.1111/j.1540-6321.2004.00632.x.
[12] PIAZZESI M. Bond yields and the federal reserve[J]. Journal of Political Economy,2005,113(2): 311-344. DOI:10.1086/427466.
[13] ANDERSEN T,BENZONI L,LUND J. Stochastic volatility,mean drift,and jumps in the short-term interest rate[R]. Chicago: Northwestern University, 2004.
[14] JARROW R,LI Haitao,ZHAO Feng. Interest rate caps "smile" too! But can the LIBOR market models capture the smile?[J]. The Journal of Finance,2007,62(1): 345-382. DOI:10.1111/j.1540-6261.2007.01209.x.
[15] LIN B H,YEH S K. Jump-diffusion interest rate process: an empirical examination[J]. Journal of Business Finance and Accounting,1999,26(7/8): 967-995. DOI:10.1111/1468-5957.00282.
[16] 陈松男. 利率衍生品设计原理与应用: 案例分析[M]. 北京: 机械工业出版社,2014.
[17] AHN C M,THOMPSON H E. Jump-diffusion processes and the term structure of interest rates[J]. The Journal of Finance,1988,43(1): 155-174. DOI:10.1111/j.1540-6261.1988.tb02595.x.
[18] SHIRAKAWA H. Interest rate option pricing with Poisson-Gaussian forward rate curve process[J]. Mathematical Finance,1991,1(4): 77-94. DOI:10.1111/j.1467-9965.1991.tb00020.x.
[19] BAZ J,DAS S R. Analytical approximations of the term structure for jump-diffusion process: a numerical analysis[J]. The Journal of Fixed Income,1996,6(1): 78-86. DOI:10.3905/jfi.1996.408164.
[20] DAS S R,FORESI S. Exact solutions for bond and option prices with systematic jump risk[J]. Review of Derivatives Research,1996,1(1): 7-24. DOI:10.1007/BF01536393.
[21] DAS S R. Discrete-time bond and option pricing for jump-diffusion processes[J]. Review of Derivatives Research,1996,1(3): 211-243. DOI:10.1007/BF01531143.
[22] DAS S R. A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model[J]. J Econ Dyn Control,1998,23(3): 333-369. DOI:10.1016/S0165-1889(98)00031-1.
[23] FINNERTY J D. Exact formulas for pricing bonds and options when interest rate diffusions contain jumps[J]. The Journal of Financial Research,2005,28(3): 319-341. DOI:10.1111/j.1475-6803.2005.00127.x.
[24] BELIAEVA N A,NAWALKHA S K,SOTO G M. Pricing American interest rate options under the jump-extended Vasicek model[J]. Journal of Derivatives,2008,16(1): 29-43. DOI:10.3905/jod.2008.710896.
[25] BELIAEVA N,NAWALKHA S K. Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models[J]. Journal of Banking & Finance,2012,36(1): 151-163. DOI:10.1016/j.jbankfin.2011.06.012.
[26] DENG Guohe. Pricing American put option on zero-coupon bond in a jump-extended CIR model[J]. Commun Nonlinear Sci Numer Simulat,2015,22(1/2/3): 186-196. DOI:10.1016/j.cnsns.2014.10.003.
[27] DUFFIE D,PAN Jun,SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica,2000,68(6): 1343-1376. DOI:10.1111/1468-0262.00164.
[28] GEMAN H, KAROUI N E,ROCHET J C. Changes of numeraire,changes of probability measures and option pricing[J]. Journal of Applied Probability,1995,32(2): 443-458. DOI:10.2307/3215299.
[1] YAN Heng-zhuang, CHEN Jun, WANG Fei, ZHOU Jian-jiang. FM Signal Detection Based on Short-time Fractional Fourier Transform [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!