Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (3): 74-85.doi: 10.16088/j.issn.1001-6600.2016.03.011
Previous Articles Next Articles
WANG Jiaqin, DENG Guohe
CLC Number:
[1] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics,1977,5(2): 177-188. DOI:10.1016/0304-405X(77)90016-2. [2] COX J C,INGERSOLL J E,ROSS S A. A theory of the term structure of interest rates[J]. Econometrica,1985,53(2): 385-407. DOI:10.2307/1911242. [3] BRENNAN M J,SCHWARTZ E S. A continuous time approach to the pricing of bonds[J]. Journal of Banking and Finance,1979,3(2): 133-155. DOI:10.1016/0378-4266(79)90011-6. [4] HULL J,WHITE A. Pricing interest-rate-derivative securities[J]. The Review of Financial Studies,1990,3(4): 573-592. DOI:10.1093/rfs/3.4.573. [5] HEATH D,JARROW R,MORTON A. Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation[J]. Econometrica,1992,60(1): 77-105. DOI:10.2307/2951677. [6] CHEN R R,SCOTT L. Pricing interest rate options in a two-factor Cox-Ingersoll-Ross model of the term structure[J]. The Review of Financial Studies,1992,5(4): 613-636. DOI:10.1093/rfs/5.4.613. [7] BANSAL R,ZHOU Hao. Term structure of interest rates with regime shifts[J]. The Journal of Finance,2002,57(5): 1997-2043. DOI:10.1111/0022-1082.00487. [8] DUFFIE D,KAN R. A yield-factor model of interest rates[J]. Mathematical Finance,1996,6(4): 379-406. DOI:10.1111/j.1467-9965.1996.tb00123.x. [9] HAMILTON J D. Rational-expectations econometric analysis of changes in regime: an investigation of the term structure of interest rates[J]. Journal of Economic Dynamics and Control,1988,12(2/3): 385-423. DOI:10.1016/0165-1889(88)90047-4. [10] DAS S R. The surprise element: jumps in interest rates[J]. Journal of Econometrics,2002,106(1): 27-65. DOI:10.1016/S0304-4076(01)00085-9. [11] JOHANNES M. The statistical and economic role of jumps in continuous-time interest rate models[J]. The Journal of Finance,2004,59(1): 227-260. DOI:10.1111/j.1540-6321.2004.00632.x. [12] PIAZZESI M. Bond yields and the federal reserve[J]. Journal of Political Economy,2005,113(2): 311-344. DOI:10.1086/427466. [13] ANDERSEN T,BENZONI L,LUND J. Stochastic volatility,mean drift,and jumps in the short-term interest rate[R]. Chicago: Northwestern University, 2004. [14] JARROW R,LI Haitao,ZHAO Feng. Interest rate caps "smile" too! But can the LIBOR market models capture the smile?[J]. The Journal of Finance,2007,62(1): 345-382. DOI:10.1111/j.1540-6261.2007.01209.x. [15] LIN B H,YEH S K. Jump-diffusion interest rate process: an empirical examination[J]. Journal of Business Finance and Accounting,1999,26(7/8): 967-995. DOI:10.1111/1468-5957.00282. [16] 陈松男. 利率衍生品设计原理与应用: 案例分析[M]. 北京: 机械工业出版社,2014. [17] AHN C M,THOMPSON H E. Jump-diffusion processes and the term structure of interest rates[J]. The Journal of Finance,1988,43(1): 155-174. DOI:10.1111/j.1540-6261.1988.tb02595.x. [18] SHIRAKAWA H. Interest rate option pricing with Poisson-Gaussian forward rate curve process[J]. Mathematical Finance,1991,1(4): 77-94. DOI:10.1111/j.1467-9965.1991.tb00020.x. [19] BAZ J,DAS S R. Analytical approximations of the term structure for jump-diffusion process: a numerical analysis[J]. The Journal of Fixed Income,1996,6(1): 78-86. DOI:10.3905/jfi.1996.408164. [20] DAS S R,FORESI S. Exact solutions for bond and option prices with systematic jump risk[J]. Review of Derivatives Research,1996,1(1): 7-24. DOI:10.1007/BF01536393. [21] DAS S R. Discrete-time bond and option pricing for jump-diffusion processes[J]. Review of Derivatives Research,1996,1(3): 211-243. DOI:10.1007/BF01531143. [22] DAS S R. A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model[J]. J Econ Dyn Control,1998,23(3): 333-369. DOI:10.1016/S0165-1889(98)00031-1. [23] FINNERTY J D. Exact formulas for pricing bonds and options when interest rate diffusions contain jumps[J]. The Journal of Financial Research,2005,28(3): 319-341. DOI:10.1111/j.1475-6803.2005.00127.x. [24] BELIAEVA N A,NAWALKHA S K,SOTO G M. Pricing American interest rate options under the jump-extended Vasicek model[J]. Journal of Derivatives,2008,16(1): 29-43. DOI:10.3905/jod.2008.710896. [25] BELIAEVA N,NAWALKHA S K. Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models[J]. Journal of Banking & Finance,2012,36(1): 151-163. DOI:10.1016/j.jbankfin.2011.06.012. [26] DENG Guohe. Pricing American put option on zero-coupon bond in a jump-extended CIR model[J]. Commun Nonlinear Sci Numer Simulat,2015,22(1/2/3): 186-196. DOI:10.1016/j.cnsns.2014.10.003. [27] DUFFIE D,PAN Jun,SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica,2000,68(6): 1343-1376. DOI:10.1111/1468-0262.00164. [28] GEMAN H, KAROUI N E,ROCHET J C. Changes of numeraire,changes of probability measures and option pricing[J]. Journal of Applied Probability,1995,32(2): 443-458. DOI:10.2307/3215299. |
[1] | YAN Heng-zhuang, CHEN Jun, WANG Fei, ZHOU Jian-jiang. FM Signal Detection Based on Short-time Fractional Fourier Transform [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 30-37. |
|