Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (3): 53-61.doi: 10.16088/j.issn.1001-6600.2016.03.008

Previous Articles     Next Articles

Cubic Mapping Graphs on the Quotient Ringsof the Gaussian Integer Rings of Modulo n

WEI Yangjiang, LIANG Yiyao, TANG Gaohua, SU Leilei, CHEN Weining   

  1. School of Mathematical and Statistics Sciences, Guangxi Teachers Education University, Nanning Guangxi 530023, China
  • Received:2016-03-03 Online:2016-09-30 Published:2018-09-17

Abstract: Let Z[i]be the ring of Gaussian integers, γ∈Z[i]. Let 〈γ〉 denote the ideal of Z[i] generated by γ. The cubic mapping graph G(γ) over the quotient ring Z[i]/〈γ〉 is a digraph,where the vertices of G(γ) are the elements of Z[i]/〈γ〉, and there is a directed edge from α to β if β=α3. In this paper, the structure of G(γ) is investigated. The numbers of the fixed points and the in-degree of the vertices 0 and 1 are obtained. Moreover, the semiregularity of the graph G(γ) is characterized. Finally,the height in G(γ) of an arbitrary zero-divisor is determined.

Key words: Gaussian integers, cubic mapping graph, in-degree, cycles, semiregular

CLC Number: 

  • O153.3
[1] DRESDEN G,DYMÀČEKW M. Finding factors of factor rings over the Gaussian integers[J]. Amer Math Monthly,2005,112(7): 602-611. DOI:10.2307/30037545.
[2] WEI Yangjiang, NAN Jizhu, TANG Gaohua. The cubic mapping graph for the ring of Gaussian integers modulo n[J].Czech Math, 2011,61(4):1023-1036. DOI:10.1007/s10587-011-0045-7.
[3] WEI Yangjiang, NAN Jizhu, TANG Gaohua.Structure of cubic mapping graphs for the ring of Gaussian integers modulo n [J].Czech Math, 2012,62(2): 527-539. DOI:10.1007/s10587-012-0027-4.
[4] CROSS J T. The Euler φ-function in the Gaussian integers[J]. Amer Math Monthly, 1983,90(8): 518-528. DOI:10.2307/2322785.
[5] 唐高华,苏华东,易忠. Zn[i]的单位群结构[J].广西师范大学学报(自然科学版),2010,28(2):38-41. DOI:10.16088/j.issn.1001-6600.2010.02.004.
[6] 唐高华,苏华东,赵寿祥. Zn[i]的零因子图的性质[J].广西师范大学学报(自然科学版),2007,25(3):32-35. DOI:10.16088/j.issn.1001-6600.2007.03.002.
[7] 苏华东,唐高华. Zn[i]的素谱和零因子[J].广西师范学院学报(自然科学版),2006,23(4):1-4. DOI:10.16601/j.cnki.issn1001-8743.2006.04.001.
[8] 潘承桐,潘承彪. 初等数论[M]. 北京:北京大学出版社,1992.
[9] WEI Yangjiang, NAN Jizhu, TANG Gaohua, et al. The cubic mapping graph of the residue classes of integers[J]. Ars Combin, 2010, 97:101-110.
[1] TANG Gaohua,LI Yu, WU Yansheng. Properties of Zero-divisor Graph of Group Ring Zn[i]G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 109-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!