Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 58-64.doi: 10.16088/j.issn.1001-6600.2024022903

Previous Articles     Next Articles

Effects of Sodium Selenite on Growth and Resistance of Quinoa under Salinity Stress

YAN Fanfan1, ZHANG Yongqing1,2*, ZHANG Meng1, HE Jiaming1, CHENG Weiwei1, JING Maoya1   

  1. 1. School of Life Sciences, Shanxi Normal University, Taiyuan Shanxi 030031, China;
    2. School of Geographic Sciences, Shanxi Normal University, Taiyuan Shanxi 030031, China
  • Received:2024-02-29 Revised:2024-05-06 Online:2025-01-05 Published:2025-02-07

Abstract: In order to investigate the effect of sodium selenite on the growth and physiological characteristics of quinoa under saline and alkaline stress, and to clarify its optimal spraying concentration under saline and alkaline stress, Long quinoa No. 4 was selected as the experimental material, and a one-factor completely randomized design was adopted using the method of pot planting test, with different concentrations of sodium selenite as the variables, five Na2SeO3 concentration gradients, and control group (without salt stress) were set up to study the effects of foliar spraying with different concentrations of sodium selenite on plant height, stem thickness of quinoa under different saline stresses, fresh weight, antioxidant enzyme activities, osmoregulatory substances and root vigor of quinoa under different saline and alkaline stresses. The results of the study showed that compared with control group, saline stress caused some degree of damage to quinoa’s morphological constructs, physiological characteristics, and even affected the growth and development of quinoa. Through foliar spraying of sodium selenite, the degree of damage to quinoa by saline stress was slowed down, plant height, stem thickness and fresh weight of quinoa were significantly increased, antioxidant enzyme activities and osmoregulatory substances of quinoa were improved, damage to quinoa membrane cells by saline stress was slowed down, root vigor of quinoa was improved, absorption of soil nutrients and water by quinoa under saline stress was promoted, and ultimately quinoa’s resistance of quinoa to salinity stress was improved. The results of the integrated affiliation function values indicated that the concentration of sodium selenite at 15 mg/kg was the most favorable to alleviate the salinity stress of quinoa. In conclusion, foliar spraying of sodium selenite had a significant effect on the growth and physiological characteristics of quinoa under saline and alkaline stress, and the best effect was achieved at a concentration of 15 mg/kg.

Key words: Chenopodium quinoa, salinity stress, sodium selenite, physiological characteristics, root vigor

CLC Number:  S519
[1] 赵作章, 陈劲松, 彭尔瑞, 等. 土壤盐渍化及治理研究进展[J]. 中国农村水利水电, 2023(6): 202-208. DOI: 10.12396/znsd.221319.
[2] 赵起越, 夏夜, 邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119. DOI: 10.19754/j.nyyjs.20220615030.
[3] 赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J]. 草业学报, 2019, 28(2): 156-167. DOI: 10.11686/cyxb2018181.
[4] 丁德志, 雷成军, 王耀, 等. 不同藜麦品种(系)在寒旱山区的种植表现[J]. 寒旱农业科学, 2023, 2(4): 323-325. DOI: 10.3969/j.issn.2097-2172.2023.04.007.
[5] AL-NAGGARA, ABD EL-SALAM R, BADRAN A, et al. Drought tolerance of five quinoa (Chenopodium quinoa Willd.) genotypes and its association with other traits under moderate and severe drought stress[J]. Asian Journal of Advances in Agricultural Research, 2017, 3(3): 1-13. DOI: 10.9734/AJAAR/2017/37216.
[6] 赵玺, 王致和, 张亚萍, 等. 钾肥施用量对贫瘠地藜麦产量、蛋白质及倒伏率的影响[J]. 中国农学通报, 2023, 39(24): 31-37. DOI: 10.11924/j.issn.1000-6850.casb2022-0715.
[7] 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. DOI: 10.11686/cyxb2019307.
[8] XUY F, LI Y H. Effects of sodium selenite on the rhizosphere environment, growth, and physiological traits of oilseed rape (Brassica napus L.)[J]. Agronomy, 2023, 13(10): 2508. DOI: 10.3390/AGRONOMY13102508.
[9] 孙鹏波, 王志军, 格根图, 等. 喷施纳米硒对紫花苜蓿产量、营养品质和硒含量的影响[J]. 中国草地学报, 2023, 45(8): 79-87. DOI: 10.16742/j.zgcdxb.20220468.
[10] 魏艳秋, 景艺卓, 郭笑恒, 等. 外源硒对植物抗盐性的影响研究进展[J]. 作物杂志, 2021(2) :15-21. DOI: 10.16035/j.issn.1001-7283.2021.02.002.
[11] 马红梅, 王彩琴, 吴昕阳, 等. 亚硒酸钠对苦荞光合特性及抗氧化酶活性的影响[J]. 灌溉排水学报, 2023, 42(12): 1-6. DOI: 10.13522/j.cnki.ggps.2023043.
[12] 郑晶, 鲍广灵, 陶荣浩, 等. 基施与叶面硒肥对富硒镉污染农田水稻降镉增硒的效应[J]. 农业环境科学学报, 2024, 43(5):974-982. DOI: 0.11654/jaes.2023-0693.
[13] 黄思杰, 刘丹丹, 杨育文, 等. 外源硒对紫色生菜生理指标及营养品质的影响[J]. 分子植物育种, 2023, 21(18): 6126-6133. DOI: 10.13271/j.mpb.021.006126.
[14] NIE M E, NING N, LIANG D, et al. Seed priming with selenite enhances germination and seedling growth of Sorghum[Sorghum bicolor (L.) Moench] under salt stress[J]. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 2023, 73(1): 42-53. DOI: 10.1080/09064710.2023.2177561.
[15] 石贵玉, 宜丽娜, 梁超红, 等. 硒对镉胁迫下罗汉果组培苗生理生化特性的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 60-64. DOI: 10.16088/j.issn.1001-6600.2011.03.009.
[16] 李平平, 张永清, 张萌, 等. 褪黑素浸种对混合盐碱胁迫下藜麦生长及生理的影响[J]. 江苏农业科学, 2023, 51(4): 77-84. DOI: 10.15889/j.issn.1002-1302.2023.04.012.
[17] 孙崇皓, 张磊, 彭福田. 亚硒酸钠对盐胁迫环境下草莓生长发育的影响[J]. 中国果树, 2023(10): 52-57, 141. DOI: 10.16626/j.cnki.issn1000-8047.2023.10.008.
[18] 吴鹏, 吕剑, 郁继华, 等. 褪黑素对盐碱复合胁迫下黄瓜幼苗光合特性和渗透调节物质含量的影响[J]. 应用生态学报, 2022, 33(7): 1901-1910. DOI: 10.13287/j.1001-9332.202207.028.
[19] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 167-169.
[20] 徐婷, 李锁丞, 王海江, 等. 盐碱胁迫下花生生长及生理特性的研究[J]. 西北农业学报, 2023, 32(6): 866-877. DOI: 10.7606/j.issn.1004-1389.2023.06.005.
[21] 范舒雅. 外源硒提高番茄干旱和盐胁迫抗性的生理机制研究[D]. 杨凌: 西北农林科技大学, 2022.
[22] 刘玲玲, 张瑛, 刘云飞, 等. 干旱胁迫下新型复合水凝胶对烟草生理特性的影响[J]. 灌溉排水学报, 2023, 42(10): 15-22. DOI: 10.13522/j.cnki.ggps.2023122.
[23] 王晶, 伏兵哲, 李淑霞, 等. 外源褪黑素对干旱胁迫下沙芦草幼苗生长和生理特性的影响[J]. 应用生态学报, 2023, 34(11): 2947-2957. DOI: 10.13287/j.1001-9332.202311.004.
[24] 王丹, 张永清, 张萌, 等. 根土空间对藜麦根系冗余及生理特性的影响[J]. 应用与环境生物学报, 2023, 29(4): 979-986. DOI: 10.19675/j.cnki.1006-687x.2022.05044.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .