广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (1): 11-15.

• • 上一篇    下一篇

耦合Schrödinger-Boussinesq方程组的显式精确解

周建军1,2, 洪宝剑1,2, 卢殿臣1   

  1. 1.江苏大学理学院,江苏镇江212013;
    2.南京工程学院基础部,江苏南京211167
  • 收稿日期:2012-06-10 出版日期:2013-03-20 发布日期:2018-11-26
  • 通讯作者: 洪宝剑(1977—),男,江西九江人,江苏大学博士研究生。E-mail:hongbaojian@163.com
  • 基金资助:
    国家自然科学基金资助项目(61070231);南京工程学院重点科研基金资助项目(KXJA2010011)

New Jacobi Elliptic Functions Solutions of the Schrödinger-Boussinesq Equations

ZHOU Jian-jun1,2, HONG Bao-jian1,2, LU Dian-chen1   

  1. 1.Faculty of Science,Jiangsu University,Zhenjiang Jiangsu 212013,China;
    2.Department of Basic Courses,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China
  • Received:2012-06-10 Online:2013-03-20 Published:2018-11-26

摘要: 耦合Schrödinger-Boussinesq方程组广泛应用于激光物理、等离子体物理等领域的一些具体物理过程,如Langmuir场的振幅、电磁波强度以及调幅的不稳定性等,本文通过推广的Jacobi椭圆函数展开法,借助Mathematica软件,求出了耦合Schrödinger-Boussinesq方程组一系列新的Jaocobi椭圆函数复合形式的精确解,部分解在极限情况下退化为孤立波解和三角函数解,丰富、简化和发展了已有的结果。

关键词: 耦合Schrodinger-Boussinesq方程组, 推广的Jacobi椭圆函数展开法, Jacobi椭圆函数解, 精确解

Abstract: Generalized Schrödinger-Boussinesq equations are widely used in the physical fields to describe various physical processes in Laser and plasma,such as Langmuir field amplitude and intense electromagnetic waves and modulational instabilities,etc.In this paper,by using the extended Jacobi elliptic founctions expansion methods,and with the aid of mathematical software,a series of new compound Jacobi formal exact solutions of the Schrödinger-Boussinesq equations are obtained.Some of which weredegenerated to the solitary wave solutions and the single triangle function solutions extreme cases.Thus this method can replenish,simplify and develop the known results.

Key words: Schrodinger-Boussinesq equations, extended Jacobi elliptic functions expansion method, Jacobi elliptic functions solutions, exact solution

中图分类号: 

  • O175.29
[1] ABLOWITZM J,CLARKSON P A.Solitons,nonlinear evolution equations and inverse scattering[M].London:Cambridge University Press,1991.
[2] LU Dian-chen,HONG Bao-jian,TIAN Li-xin.Backlund transformationand n-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients[J].Int J Nonlinear Sci,2006,1(2):3-10.
[3] 卢殿臣,洪宝剑,田立新.带强迫项变系数组合kdv方程的显式精确解[J].物理学报,2006,55(11):2072-2076.
[4] 马云苓,耿献国.两类(2+1)-维孤子方程的显式解[J].广西师范大学学报:自然科学版,2011,29(2):45-49.
[5] HONG Bao-jian.New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system[J].Appl Math and Comp,2010,217(2):472-479.
[6] 蔡国梁,张风云,任磊.用扩展的F-展开法求耦合Schrödinger-Boussinesq方程组的精确解[J].应用数学,2008,21(1):90-97.
[7] 陈翰林.耦合Schrödinger-Boussinesq方程组的显式精确解[J].应用数学学报,2006,29(5):955-960.
[8] HON Y C,FAN En-gui.A series of exact solutions for coupled Higgsfield equation and coupled Schrödinger-Boussinesq equation[J].Nonlinear Analysis,2009,71(7/8):3501-3508.
[9] CHOWDHURY A R,DASGUPTA B,RAO N N.Painleve analysis and backlund transformations for coupled generalized Schrödinger-Boussinesq system[J].Chaos Solitons Fractals,1998,9(10):1747-1753.
[10] GUO Bo-ling,DU Xian-yun.Existence of the time periodic solution for damped Schrödinger-Boussinesq equation[J].Communications in Nonlinear Science Numerical Simulation,2000,5(4):179-183.
[1] 马云苓, 耿献国. 两类(2+1)-维孤子方程的显式解[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 45-49.
[2] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发