|
广西师范大学学报(自然科学版) ›› 2014, Vol. 32 ›› Issue (4): 72-75.
龙伟锋, 徐波
LONG Wei-feng, XU Bo
摘要: 设X为有限集合,E为X上的等价关系且IX是X上的对称逆半群。令IE*(X)={f∈IX:对任意的x,y∈dom(f),(x,y)∈E当且仅当(f(x),f(y))∈E},则IE*(X)是IX的逆子半群。设X为全序集,E为X上的凸等价关系。令OPIE*(X)为IE*(X)中所有方向保序部分一一变换作成的半群。这是一类全新的半群,有一定的难度和复杂性,通过对它的研究可以探求新的变换半群的结构与性质。本文讨论它的Green关系。
中图分类号:
[1] HOWIE J M. Fundamentals of semigroup of theory[M]. Oxford: Oxford University Press,1995. [2] FERNANDES V H. The monoid of all injective orientation preserving partial transformations on a finite chain[J]. Communications in Algebra,2000,28(7):3401-3426. [3] FERNANDES V H. The monoid of all injective order preserving partial transformation on a finite chain[J]. Semigroup Forum,2001,62(2):178-204. [4] PEI Hui-sheng. Regularity and green’s relations for semigroups of transformations that preserve an equivalence[J].Communications in Algebra, 2005, 33(1):109-118. [5] DENG Lun-zhi, ZENG Ji-wen, YOU Tai-jie. Green’s relations and regularity for semigroups of transformations that preserve order and a double direction equivalence[J]. Semigroup Forum,2012,84(1):59-68. [6] 龙伟锋,游泰杰,龙伟芳,等.保E*关系的部分一一变换半群[J].西南大学学报:自然科学版,2013,35(4):63-66. [7] 龙伟锋,游泰杰.IE*(X)中E类方向保序变换半群的秩[J].数学的实践与认识,2014,44(10):230-234. [8] 龙伟锋,徐波,游泰杰,等.保E且严格保序部分一一变换半群的秩[J].四川师范大学学报:自然科学版,2014,37(3):316-319. [9] ZHAO Ping, YANG Mei. Regularity and Green’s relations on semigroups of transformation preserving order and compression[J].Bulletin of the Korean Mathematical Society,2012,49(5):1015-1025. |
[1] | 许固镇, 邓培民. 相伴模糊变换半群的一些性质[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 26-30. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |