广西师范大学学报(自然科学版) ›› 2014, Vol. 32 ›› Issue (4): 6-10.

• • 上一篇    下一篇

新型高增益CMOS跨导运算放大器

凡东东, 宋树祥, 蒋品群, 岑明灿   

  1. 广西师范大学电子工程学院,广西桂林541004
  • 收稿日期:2014-09-20 发布日期:2018-09-26
  • 通讯作者: 宋树祥(1970-),男,湖南双峰人,广西师范大学教授。E-mail:songshuxiang@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61361011)

Novel High Gain CMOS Operational Transconductance Amplifier

FAN Dong-dong, SONG Shu-xiang, JIANG Pin-qun, CEN Ming-can   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2014-09-20 Published:2018-09-26

摘要: 为了解决在低电压、深亚微米工艺条件下获得高增益运算放大器的问题,通过引入电流倍增和分流技术,提出了一种新型高增益可调的跨导运算放大器(OTA)。在1.8 V工作电源下采用0.18 μm COMS标准工艺对其进行Spectre模拟,结果表明,该OTA的直流开环增益在61 dB至91 dB可调,最大静态功耗为434 μW,最小共模抑制比为114 dB。所提出的跨导运放与传统OTA相比,具有高增益和增益可调的优点,可适用于通信、电子测量,以及自动控制等系统。

关键词: CMOS, 跨导运放, 电流处理, 高增益

Abstract: A novel operational transconductance amplifier (OTA) with high and variable gain, by introducing the current multiplication and distribution technology, is proposed to solve the problem of obtaining high and tunable gain operational amplifier in a low voltage and deep sub-micron process. Under the supply voltage of 1.8 V, the OTA is simulated by Spectre in 0.18 μm standard COMS technology. Results show that the OTA gets a DC open loop tunable gain from 61 dB to 91 dB, maximum static power consumption of 434 μW and minimum common mode rejection ratio of 114 dB. Compared with traditional OTA, the proposed OTA has the advantages of high and variable gain, it can be applied to communication, electronic measurement and automatic control systems.

Key words: CMOS, OTA, current processing, high gain

中图分类号: 

  • TN721
[1] BULT K, GEELEN G J G M. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain[J]. IEEE Journal of Solid-State Circuits, 1990, 25(6): 1379-1384.
[2] URBAN C, MOON J E, MUKUND P R. Designing bulk-driven MOSFETs for ultra-low-voltage analogue applications[J]. Semiconductor Science and Technology, 2010, 25(11): 1-8.
[3] RAGHAV H S, SINGH B P, MAHESHWARI S. Design of low voltage OTA for bio-medical application[C]//Emerging Research Areas and 2013 International Conference on Microelectronics. New York:IEEE Press, 2013: 1-5.
[4] 张津京,裴东.一种0.18 μm CMOS低电压低功耗跨导运算放大器[J].微电子学,2012,42(3):315-317.
[5] SONI M B H, DHAVSE M R N. Design of operational transconductance amplifier using 0.35 μm Technology[J]. International Journal of Wisdom Based Computing, 2011,1 (2):28-31.
[6] LI Yi-lei, HAN Ke-feng, TAN Xi, et al. Transconductance enhancement method for operational transconductance amplifiers[J]. Electronics Letters, 2010,46(19):1321-1323.
[7] YAN Z, MAK P I, MARTINS R P. Double recycling technique for folded-cascode OTA[J]. Analog Integrated Circuits and Signal Processing, 2012, 71(1): 137-141.
[8] 解鸿国, 宋树祥. 新型高频高线性CMOS跨导线性电流模乘/除法器设计[J].广西师范大学学报:自然科学版, 2012, 30(2): 12-16.
[9] ZHU Jing, ZHANG Yun-wu, SUN Wei-feng, et al. A novel operational transconductance amplifier with high Gm using improved differential current redistribution technique (DCRT)[C]//ASIC (ASICON), 2013 IEEE 10th International Conference. New York:IEEE Press, 2013: 1-4.
[10] KANG S Y, JANG J, OH I Y, et al. A 2.16 mW low power digitally-controlled variable gain amplifier[J].Microwave and Wireless Components Letters, IEEE, 2010,20(3): 172-174.
[11] RAZAVI B. Design of analog CMOS integrated circuits[M]. New York: McGraw Hill Higher Education, 2001:34-108.
[1] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1-8.
[2] 程洋,宋树祥,袁伟强,李桂琴,庞中秋. 8.9 GHz高效高增益E类功率放大器设计[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 42-49.
[3] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz 全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16.
[4] 程远垚, 宋树祥, 蒋品群. 2.4 GHz CMOS低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发