广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (4): 25-29.doi: 10.16088/j.issn.1001-6600.2015.04.005

• • 上一篇    下一篇

基于机器视觉的疲劳驾驶监测预警系统

何鹏, 刘高凯, 李静辉   

  1. 齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006
  • 收稿日期:2015-04-30 出版日期:2015-12-25 发布日期:2018-09-21
  • 通讯作者: 何鹏(1970—),男(蒙古族),黑龙江肇源人,齐齐哈尔大学教授,博士。E-mail: 740842445@qq.com
  • 基金资助:
    科技部科技惠民计划项目(2013GS230301)

Fatigue Driving Monitoring and Early Warning System Based on Machine Vision

HE Peng, LIU Gao-kai, LI Jing-hui   

  1. College of Communications and Electronics Engineering,Qiqihar University,Qiqihar Heilongjiang 161006,China
  • Received:2015-04-30 Online:2015-12-25 Published:2018-09-21

摘要: 针对当前智能化疲劳驾驶监测产品的缺乏,本文提出一种基于机器视觉理论的设计方案。在对人眼轮廓进行拟合时,由于基于随机投票机制椭圆拟合算法的时间复杂度较高,提出一种改进的方法,通过缩小拟合点选择的范围,降低了拟合的时间复杂度;在提取人眼轮廓特征参数时,考虑到人眼大小不同和前后移动的情况,引入归一化方法,减少了特征提取的误差;在对疲劳状态进行判定时,对于PERCLOS方法不能兼顾准确度和实时性的问题,提出连续帧分析的方法,通过对参数做适当的修正,驾驶人的状态既可以得到很好的区分,同时保证了很好的实时性。实验结果表明,与改进前的算法相比,本文的算法提高了系统的准确度和实时性。

关键词: 旋转目标法, 投票机制, 归一化, 连续帧分析

Abstract: In view of the lack of current intelligent fatigue driving monitoring products, a design scheme based on machine vision theory is proposed. When fitting the eye contour, due to the high complexity of the algorithm of ellipse based on random voting mechanism, a modified method is proposed to reduce the time complexity of the algorithm, by narrowing the range of fitting points. When one judges the fatigue state, the PERCLOS method can not take into account the accuracy and real-time problem. By modifying the parameters appropriately, the method of continuous frame analysis is presented, so that the driver’s state can be distinguished, and the real-time performance is guaranteed. Experimental results show that the algorithm improves the accuracy and real-time performance of the system compared with the previous algorithm.

Key words: rotating target method, voting mechanism, normalization, continuous frame analysis

中图分类号: 

  • U491.6
[1] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1999, 21(5):476-480.
[2] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008,34(3):295-298.
[3] 黄慧琼, 覃运梅. 考虑驾驶员性格特性的超车模型研究[J]. 广西师范大学学报:自然科学版, 2015,33(1):20-26.
[4] JI Q, ZHU Z, LAN P. Real-time nonintrusive monitoring and predition of driver fatigue[J]. IEEE Transactions on Vehicular Technology, 2004,53(4):1052-1068.
[5] BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006,7(1):63-77.
[6] 葛如海, 陈彦博, 刘志强. 基于计算机视觉的驾驶员疲劳识别方法的研究[J]. 中国安全科学学报, 2006,16(9):134-138.
[7] 周锋华, 孟宪元, 梅顺良, 等. 司机疲劳驾驶实时检测系统设计[J]. 测控技术, 2013,32(1):38-40.
[8] 潘晓东, 李君羡. 基于眼部行为的驾驶疲劳监测方法[J]. 同济大学学报:自然科学版, 2011,39(2):231-235.
[9] 郑培, 宋正河, 周一鸣. 机动车驾驶员驾驶疲劳测评方法的研究状况及发展趋势[J]. 中国农业大学学报, 2001,6(6):101-105.
[10] 程如中, 赵勇,戴勇,等. 基于 Adaboost 方法的车载嵌入式疲劳驾驶预警系统[J]. 北京大学学报:自然科学版, 2012,48(5):719-723.
[11] BRADSKI G R. Computer vision face tracking for use in a perceptual user interface[C]//IEEE Workshop on Applications of Computer Vision. Princeton, NJ: IEEE Press, 1998: 214-219.
[12] KNIPLING R R, WIERWILLE W W. Vehicle-based drowsy driver detection: current status and future prospects[R]. USA: Atlanta. Georgia, 1994.
[13] 卡斯尔曼. 数字图像处理[M]. 朱志刚,林学訚,石定机,等译. 北京:电子工业出版社, 2002:412-413.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发